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Abstract

The Madden-Julian Oscillation (MJO) is the most pronounced component of atmospheric variability
on intraseasonal timescales in the tropics and strongly interconnected with other weather and cli-
mate phenomena, even in the extratropics. Its predictability is thus a key issue for modern numerical
weather prediction. However, the accuracy of MJO forecasts is still deicient, not only due to model
imperfections caused by an incomplete understanding of the underlying multi-scale physical mecha-
nisms, but also due to suboptimal Data Assimilation (DA) systems. The latter problem is addressed
in this thesis, in which possible improvements in DA for MJO prediction are investigated.

Since running a full-blown general circulation model on the intraseasonal timescale is computationally
very expensive, the approach taken in this work are simpliied experiments in a toy model setting.
For this, the ’Skeleton Model for Tropical Intraseasonal Variability’ was used in its meridionally and
vertically highly truncated nonlinear deterministic version as in Majda and Stechmann (2011). This
model is based on the consideration of the MJO as neutrally stable oscillation at planetary scale, that
is evoked by convective instabilities at sub-planetary scale. It couples a nonlinear oscillator relation-
ship between moisture and the planetary scale envelope of synoptic scale convective activity to the
well-known Matsuno-Gill model for tropical large scale dynamics. With these simple equations, which
are solvable at small computational cost, the Skeleton model was shown to capture the main observed
large scale characteristics of the MJO, including its typical phase speed, dispersion relation, and wind
structure. As an eicient toy model for the MJO it is thus particularly suitable for the purpose of this
work.

The investigation of possible DA improvements is done with identical twin experiments and based
on a stochastic Ensemble Kalman Filter (EnKF). With this approach, any imperfections in the sys-
tem with respect to perfect sequential Bayesian iltering are reduced to unavoidable sampling errors
and the EnKF’s neglect of non-Gaussian moments in the ensemble’s distribution. Due to the non-
linearity in the Skeleton model, the latter can however be strong, especially in the strictly positive
variable of convective activity. While a variety of techniques exists to address non-Gaussianity in
an EnKF, this thesis focuses on the EnKF’s extension by analysis constraints, then called Quadratic
Programming Ensemble (QPEns), as recently suggested by Janjić et al. (2014). The QPEns appears
speciically promising in this work’s setup as the Skeleton model’s underlying physical equations incor-
porate two energy conservation principles. Besides a detailed investigation of the EnKF with special
regard to localization and the efects of observing diferent variables, this thesis shows how in partic-
ular the constraint of the analysis ensemble members to the truth’s total energy improves the ilter’s
result and can mitigate negative efects of neglected or only rudimentarily treated non-Gaussianity.
Special attention is thereby paid to the iltering skill for the tropical wave types that are present in
the Skeleton model, most importantly amongst them the MJO.
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1 Introduction

The forecast skill that is achieved by present-day operational numerical weather prediction (NWP)
systems is largely limited by model errors and uncertainties in the initial and boundary conditions.
Those inhibit it from reaching its intrinsic limit as given by the weather regime dependent chaotic
growth of ininitesimal atmospheric disturbances. Much of the research efort in the atmospheric
sciences is therefore put into model improvements, better observational networks, and advances in
Data Assimilation (DA) algorithms. However, the amount of discrepancy between the practical and
theoretical predictability is subject to regional variations and particularly high in low latitudes. Some
main causes for this are persistent model errors due to the complicated multiscale interactions between
convectively coupled waves, a sparser network of weather stations caused by a smaller land coverage
together with a higher percentage of developing countries, speciic diiculties with satellite measure-
ments, and moreover suboptimal DA systems that are often tailored for the dominance of geostrophic
balance in the extratropics. Yet, as a consequence of the multiple interdependencies in the continuous
atmosphere, any progress in tropical forecasting has the potential to yield beneits for a wider than
only the equatorial area. It is for these reasons that the improvement of tropical weather prediction
constitutes a particularly crucial issue. [Žagar et al., 2016; Bechtold, 2019; Laing and Evans, 2011,
Chapter 9]

Amongst the many eforts that deal with the above challenges is the project B6 of the Transregional
Collaborative Research Center ǴWaves to WeatherǴ (2nd phase of W2W, SFB/TRR165, 2019-2023),
in which Ǵnew data assimilation approaches to better predict tropical convectionǴ are developed. This
project is aimed at reducing errors in the initial conditions for NWP in the tropics, and especially
those connected to tropical waves and convection as they can easily amplify during the subsequent
forecast. The main approach chosen to reach this objective are ensemble DA experiments based
on tropical aquaplanet channel simulations with the full-blown, i.e. highly resolved, ICOsahedral
Non-hydrostatic (ICON) model of the German Weather Service (DWD). However, due to their high
computational demand, such experiments are only possible on time scales up to approximately 40 days.
Consequently, the development of DA techniques that are beneicial for the prediction of circulations
on intraseasonal to seasonal timescales can not be covered by them. Of special concern in this regard
is the Madden-Julian Oscillation (MJO) as it is the most pronounced component of intraseasonal
variablity in the tropics. The MJO furthermore has large impacts on many other tropical weather and
climate phenomena, such as monsoon and El Niño-Southern Oscillation (ENSO) development, and
even interacts with the extratropics (Khouider et al., 2013). In fact, its deicient representation in
tropical forecasts is already for some time known to be a key component for the lack of predictability
on subseasonal time scales, not only in the equatorial area (Vitart and Molteni, 2010). Although
a prominent obstacle is its still incomplete physical understanding and thus poor representation in
general circulation models (GCMs), the MJO’s large scale structure is nowadays well known. Progress
can therefore also be expected from more suitable DA algorithms to reduce the initial uncertainty in
those (Chen and Majda, 2016).

This is where this work comes in. Embedded in the above mentioned ǴWaves to WeatherǴ project as a
supplement to the high-resolution experiments, it aims to improve DA for MJO prediction. Therefore,
simpliied studies were conducted with a computationally inexpensive toy model, that is designed to
reproduce in particular the large scale structure of the MJO but contains no sophisticated orography
or extratropical inluences. This model is the so called ’Skeleton Model for Tropical Intraseasonal
Variability’, which was irst published by Majda and Stechmann (2009) in its simplest, meridionally
and vertically truncated linearized form. The strikingly good accordance of the eigenmodes in this
original version with the main large scale characteristics of some tropical wave types have made the

9



Skeleton model well known. Especially the MJO is well represented with its typical phase speed,
dispersion relation, and wind structure. Therefore, the model has since been published in various
extended and modiied forms; see e.g. Majda and Stechmann (2011) for the nonlinear version, Thual
et al. (2014) for its corresponding stochastic version, or Thual et al. (2015) and Thual and Majda
(2016b) for extensions in its meridional and vertical structure, respectively. As a trade-of between
complexity and accuracy, and in order to avoid model error, the focus in this work is put on the fully
truncated nonlinear deterministic version as in Majda and Stechmann (2011). The MJO is therein
captured with greater realism than in the original linearized model, but the model is still easy to handle
due to the strong truncation. This model version can be regarded as an extension of the well-known
Matsuno-Gill model for tropical large scale dynamics, to which it couples additional equations for
moisture and the planetary scale envelope of synoptic scale convective activity. Those are themselves
interrelated by a nonlinear oscillator relationship as the MJO is assumed to be a neutrally stable wave
at planetary scale, driven by convective instabilities at sub-planetary scale.

In this work, identical twin experiments with the Skeleton model were used to locate possible improve-
ments in DA for MJO prediction. Whereas similar research on the construction of a nonlinear ilter for
the Skeleton model has already been successfully conducted by Chen and Majda (2016), this thesis is
conined to stochastic Ensemble Kalman Filter (EnKF) based techniques. The probability estimation
for the atmospheric state is thus represented by a inite ensemble, which is updated stochastically such
that the Kalman ilter equations are statistically reproduced. With this setup, any error sources in
the system with respect to perfect sequential Bayesian iltering are conined to unavoidable sampling
errors and potential non-Gaussian moments in the ensemble’s distribution, that are neglected in the
EnKF. The latter is speciically crucial in the Skeleton model since the convective activity is conined
to positive values and its probability distribution can be signiicantly skewed depending on the model’s
background settings. Besides a thorough investigation of beneicial localization and observations in the
EnKF, this thesis is therefore in particular aimed at the mitigation of ilter imperfections due to non-
Gaussianity. The assessment of the general ilter quality was thereby in all experiments complemented
by a special focus on the predictability of the Skeleton model’s tropical wave types, especially the MJO.

Diverse methods are researched to improve the probability estimation in EnKFs in the presence of
non-Gaussianity. Amongst them are constraints of the analysis ensemble members to physically moti-
vated, known or estimated properties. This transforms the update step into a numerical optimization
problem and was therefore called Quadratic Programming Ensemble (QPEns) when irst proposed for
linear and boundary constraints by Janjić et al. (2014). The QPEns has since shown great poten-
tial for improvements with respect to an EnKF under non-Gaussian conditions and has already been
successfully applied in other toy model studies (see Janjić et al., 2014; Zeng et al., 2017; Ruckstuhl
and Janjić, 2018). Hence, constraints of physical quantities to the synthetic truth’s value were also
pursued as approach to mitigate non-Gaussianity efects in this work. This was especially motivated
by two energy conservation properties, i.e. moist static and total energy, that are incorporated in
the Skeleton model’s underlying equations. In particular, constraining the nonlinear total energy ap-
peared promising as it includes an automatic positivity constraint for convective activity. The efect of
constraining these two model balances was thus investigated, and compared to a dry mass constraint
and a simple positivity constraint for convective activity.

This thesis is further structured as follows: In Chapter 2, the theoretical background for this work
is presented, which is subdivided into three separate subsections: General information on important
aspects of tropical meteorology with respect to convectively coupled waves and the MJO is given in
2.1, the Skeleton model version that is used in this work is described in detail in 2.2, and relevant
foundations of DA, especially the stochastic EnKF and the QPEns, are explained in 2.3. Thereafter,
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in Chapter 3, the methods that were used to produce this work’s results are introduced. First, the
general setup of the identical twin experiments is explained in 3.1, and subsequently, the details of
the DA algorithms’ implementations are described in 3.2, and the diagnostics that were used for their
assessment in 3.3. The results of this thesis are inally presented in Chapter 4 in three parts. Some
preparatory information on climatological properties of the Skeleton model that are important for the
setup and interpretation of the DA results is given in 4.1. Based on this, 4.2 contains the results
for the optimal localization and the investigation of diferent observational setups in the EnKF, and
4.3 presents the impacts of the analysis constraints. All results are put into context, interpreted,
and thereafter discussed with respect to their accordance with earlier work, further options for their
veriication, and their importance and applicability for NWP in Chapter 5. Lastly, a summary and
outlook for possible future work is given in Chapter 6. All variables, constants and functions that
are used throughout the text without repeated explanation are listed in Appendix A, sorted by the
chapters of their irst appearance. Furthermore, an alphabetical list of all introduced abbreviations
can be found in Appendix B.
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2 Theoretical background

2.1 Tropical meteorology

In this chapter, some general information on tropical meteorology that is important to understand the
MJO and the Skeleton model is introduced. After the presentation of the most important aspects of
the climatological mean circulation in 2.1.1, the Matsuno-Gill theory of equatorial waves is explained
in 2.1.2, and the main features of observed convectively coupled waves and the MJO are described in
2.1.3.

2.1.1 Climatological background circulation

The atmosphere is a continuous system without clearly deinable distinct regions such as the tropics.
Nevertheless, some general characteristics of the mean atmospheric circulation and forcing in the area
adjacent to the equator can be named that are substantially diferent from higher latitudes of the
Earth. Detailed descriptions of the topical climatology, of which a summary is given in the following,
can be found in many standard textbooks and lecture scripts on tropical meteorology or general at-
mospheric dynamics, e.g. by Smith (2015) in Chapter 1, by Laing and Evans (2011) in Chapters 1
and 3 or by Holton and Hakim (2013) in Chapter 11.

Due to the solar radiative excess in the tropics and the respective deicit in the extratropics, the
mean energy transport on Earth is directed polewards. Though complemented by oceanic currents,
this is in large parts brought about by atmospheric motions. Since the sun’s radiation is primarily
absorbed by oceans and continental areas, the surplus heating of the tropical air masses happens
indirectly via mainly latent, but also sensible heat release from the surface, such that the tropical at-
mosphere is even characterized by net radiative cooling. The intertropical convergence zone (ITCZ),
a longitudinal band of deep convection and high precipitation rates, that comes along with a large
vertical extend of the troposphere and low surface pressures, is thus an important component of the
tropical mean meridional circulation, the Hadley cell. Besides the ITCZ, the Hadley cell is further-
more composed of poleward motion of air with surplus moist static energy in the upper troposphere,
subsidence with high surface pressures in the subtropics, and trade winds in the lower troposphere.
The latter transport moisture that has been acquired from the oceans equatorwards. Since these
trade winds are delected westwards, i.e. become easterlies, due to the momentum balance at decreas-
ing Coriolis force, they have moreover a large impact on the mean motion in zonal direction. They
efectuate an increased sea surface temperature and thus enhance latent heating in the western in
contrast to the eastern Paciic area. Analogous to the Hadley cell, this constitutes a zonal circulation
cell with vertical extend over the Paciic, the Walker cell, which is the most prominent component of
the tropical atmospheric mean low in east-west extend, and also coupled to ocean currents. Both,
the Hadley and the Walker circulation, are subject to slight seasonal variations. Additionally, there
are smaller zonal circulations in the climatological as well as the seasonal means. Those are mostly
driven by zonal pressure gradients due to diferential diabatic heating over sea and land areas, such
as e.g. monsoon events. In conclusion, in this simpliied treatment, the tropics are in contrast to the
midlatitudes particularly shaped by excess solar radiation with smaller seasonal variation, enhanced
latent heating due to the large ocean coverage, and the vanishing Coriolis force, which in combination
efectuate a characteristic large scale mean circulation.

On top of this mean circulation, there are several types of instabilities, i.e. waves and vortices, that
can occur in the tropical atmosphere. Many of them are also clearly distinct from those typical for
higher latitudes. For subseasonal to seasonal and synoptic to planetary temporal and spatial extends,
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they are especially characterized by a weak geostrophic balance, a strong coupling to convection, and
interactions across multiple scales. Some prominent examples that can be named are e.g. tropical
cyclones, equatorial waves, the MJO, and ENSO.

2.1.2 Matsuno-Gill theory of tropical waves

The most basic disturbances of the mean circulation in the tropics, which lay the foundation for many
weather and climate phenomena in low latitudes, are equatorial waves. These are periodic large scale
luctuations in pressure, temperature, and wind that propagate zonally and vertically and are conined
to the equatorial area. Often evoked by regional weather events, such as e.g. deep convection, they
can extend over long spatial scales or span the whole equator, and comprise and organize smaller scale
convective elements along them (Kiladis et al., 2009). Therefore, they can spread local energy to wider
regions (Wheeler and Nguyen, 2014).

A consistent theory of free dry dynamical oscillations in the equatorial atmosphere was irst derived by
Matsuno (1966). Its results are a number of theoretical wave types, whose dispersion relations are in
very good agreement with observations (Wheeler and Kiladis, 1999). Following Matsuno (1966), the
derivation of the equatorial wave types starts from the common atmospheric Navier-Stokes equations,
which describe atmospheric dynamics as the motion of a stably stratiied luid on the rotating Earth’s
sphere. Hereafter, their variables are indicated by x, y and z for the zonal, meridional and vertical
position, u and v for the respective horizontal winds, t for the time, and p for the pressure. ρ stands
for the density, which can be decomposed into a constant mean, a purely height dependent, and a
perturbation component as ρ = ρ0 + ρ(z) + ρ′(x, y, z). In a irst step, the following simpliications are
applied to the equations:

• neglect of centrifugal force
• neglect of friction/viscosity and diabatic heating or other dynamical forcing
• linearization around an assumed resting background state, i.e. all variables are perturbations,

thus neglect of advection; a non-zero background wind would simply Doppler-shift the resulting
wave-frequencies

• β-plane approximation for the Coriolis force due to the proximity to the equator: assumption of
an approximately constant meridional derivative β of the Coriolis parameter

• hydrostatic and Boussinesq approximations: assumption of a balance between the gravitational
acceleration g and the vertical pressure gradient, and neglect of density variations if not in
combination with gravity.

Furthermore, the horizontal and vertical dynamics are decoupled by the deinition of vertical modes
∂
∂z

(

1

g ∂ρ
∂z

∂p
∂z

)

=: 1
gH∗

p
ρ0

(2.1) with scale heights H∗. This yields the single-layer equatorial shallow

water equations for the horizontal motion of each vertical mode, where H∗ is in this context called
equivalent depth as it replaces the mean luid depth:

∂u

∂t
− βyv = − 1

ρ0

∂p

∂x

∂v

∂t
+ βyu = − 1

ρ0

∂p

∂y

1

ρ0

∂p

∂t
= −gH∗

(

∂u

∂x
+

∂v

∂y

)

.

(2.2)

Next, a plane wave ansatz u,v,p ∝ ei(kx−ωt) (2.3) and an equatorial trapping boundary condition
lim

y→±∞
u,v,p = 0 (2.4) are introduced. Solutions for the amplitudes of u, v, and p and corresponding
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frequencies ω can then be calculated for any arbitrary zonal wavenumber k and equivalent depth. As
a whole, they form an orthogonal basis for any distributions of u, v, and p with the given k and H∗

that respect the boundary condition. Moreover, the vertical modes also form an orthogonal complete
set for reasonable boundary conditions. Any tropical waves can thus be described as superpositions
of the horizontal wave solutions for varying equivalent heights.

The horizontal plane wave solutions for a given H∗ are typically categorized by their zonal dispersion
relations and meridional structures into the following distinct types. Here, all variables have been

nondimensionalized by the dimensions for horizontal lengths [L] =
√√

gH∗

β and time [T ] = 1
gH∗

√
β

(2.5), Φm indicate the parabolic cylinder functions (PCFs) and m consequently the waves’ meridional
mode numbers.

wave type
approximate zonal dispersion
relation structure:





u
v
p
ρ0



 ∝ ei(kx−ωt)·

quasi geostrophic
Rossby/equatorial
Rossby (ER)

ω = −k
k2+2m+1

∀m ∈ N





i(ω2 − k2)Φm(y)
m(k − ω)Φm−1(y)− 1

2(ω + k)Φm+1(y)
−m(k − ω)Φm−1(y)− 1

2(ω + k)Φm+1(y)





eastward and
westward moving
inertio-gravity
(EIG,WIG)

ω = ±
√
k2 + 2m+ 1 ∀m ∈ N





i(ω2 − k2)Φm(y)
m(k − ω)Φm−1(y)− 1

2(ω + k)Φm+1(y)
−m(k − ω)Φm−1(y)− 1

2(ω + k)Φm+1(y)





another eastward
moving
inertio-gravity
(EIG)

ω = k
2 +

√

(

k
2

)2
+ 1,

indicated with m = 0





2i(k − ω)Φ0(y)
Φ1(y)
Φ1(y)





mixed
Rossby-gravity
(MRG)/Yanai

ω = k
2 −

√

(

k
2

)2
+ 1,

indicated with m = 0





2i(k − ω)Φ0(y)
Φ1(y)
Φ1(y)





Kelvin (similarity
with coastal
Kelvin waves)

ω = −k,
indicated with m = −1





0
Φ0(y)
Φ0(y)





The classiication of the irst three wave types as Rossby or gravity waves is evident due to the rather
geostrophic and ageostrophic features, respectively, although the quasi geostrophic Rossby waves show
some particularities compared to those in mid-latitudes. However, there are two additional wave types,
the mixed Rossby-gravity (MRG) and Kelvin waves, which show uncommon mixed geostrophic and
ageostrophic properties with a decreasing predominance of the Rossby wave characteristics with in-
creasing zonal wavenumber. There is thus – in contrast to the mid-latitudes – no clear scale separation
between Rossby and gravity waves. The vertical propagation of the equatorial waves is given by the
structure deined in the vertical modes.

The above theory derives fundamental free dry dynamical wave types that form basis functions for any
equatorially conined zonally periodic perturbations. Based on this, Gill (1980) calculated the steady
state response of the tropical atmosphere to diferent diabatic heating distributions. He therefore
added some further assumptions to the equatorial shallow water equations, namely:

• a longwave approximation ∂v
∂t = 0 (2.6), such that the zonal low is in geostrophic balance with
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the meridional pressure gradient; this is assumed for long zonal and temporal scales and dampens
gravity and MRG waves with small amplitudes (Majda, 2003, Chapter 9)

• a constant forcing/diabatic heating term Q to the right hand side of the pressure equation
• friction in all variables by replacing ∂

∂t → ∂
∂t + ϵ (2.7) with ϵ ≥ 0.

This reduced model was successful in deriving some of the basic characteristics of the Hadley and the
Walker cell as responses to simple diabatic heating structures. It has thereupon become well known
as Matsuno-Gill model and is still frequently used as a starting point to study tropical lows caused
by diabatic heating, i.e. mostly convection.

2.1.3 Convectively coupled equatorial waves and MJO

The Matsuno theory of free dry dynamic equatorially trapped waves has gained recognition when
Wheeler and Kiladis (1999) published an article in which they analyzed the zonal wavenumber-
frequency spectrum of 18 years of outgoing longwave radiation (OLR) satellite records in the tropics.
Since OLR can be regarded as a representative measure for cloudiness, the dispersion relations in the
retrieved statistically signiicant spectral peaks relect motions related to deep convection. Interest-
ingly, except for smaller than expected equivalent heights, many of them still show a good agreement
with the theoretical curves (cf. Figure 2.1). This inding thus implied a strong interaction between
convection and dry dynamics, expressed in so called convectively coupled equatorial waves (CCEWs).
Nowadays, it is known that they approximately share the dispersion relations and horizontal struc-
tures of the Matsuno wave types but exhibit more complicated vertical structures, which are also
responsible for the difering equivalent heights (Kiladis et al., 2009).

Figure 2.1: Statistically signiicant peaks in the zonal wavenumber-frequency spectrum of 18 years of
twice daily satellite records of tropical OLR data, decomposed in antisymmetric (left) and symmetric
(right) components about the equator, superimposed theoretical dispersion curves of free dry dynamic
tropical waves for diferent indicated equivalent heights and meridional modes (in this igure indicated
with n instead of m); from Wheeler and Kiladis (1999).

As apparent in the Wheeler-Kiladis diagram, CCEWs make up a large portion of the tropical variance
on large scales. However, there is one additional signiicant spectral peak in the equatorially symmetric
components that can not be classiied as such. The lat dispersion relation in the intraseasonal time
range and at planetary zonal scales is clearly associated with a perturbation that was irst detected
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by Madden and Julian (1971) and is therefore called Madden-Julian Oscillation (MJO). The MJO at-
tracts much research interest (Zhang et al., 2013) as it is the main component of tropical intraseasonal
variability, and moreover connected to extratropical intraseasonal variability and largely inluencing
a multitude of tropical phenomena, ranging from tropical cyclones and monsoon to ENSO (Khouider
et al., 2013). By now, these interdependencies are known to be due to the fact that the MJO is the
planetary scale envelope of multiple CCEWs, mostly convectively coupled ER waves of small merid-
ional mode and Kelvin waves (Castanheira and Marques, 2020), which are themselves envelopes of
multiple mesoscale convective systems. This reveals the organized nature of tropical convection across
many scales, whose details are however complex and still not fully understood (Khouider et al., 2013).
Nevertheless, looking primarily at the large scale, the MJO can be described by the following most
important observed characteristics (Zhang, 2005):

• a deep convective center with inactive phases to the east and west, moving eastward at a phase
speed of approximately 5 m

s
and showing a characteristic dispersion relation with constant in-

traseasonal oscillation periods of 30− 90 days for a range of small zonal wavenumbers
• a horizontal structure with positive humidity anomalies to the east of the convective center and

a quadrupole wind circulation around the convective center
• a geographical coninement to warm ocean surfaces, beginning as standing wave in the Indian

ocean and propagating across the western Paciic (Majda and Stechmann, 2011)
• an interannual variability with intermittent generation of MJO events, that are often organized

into wavetrains (Thual et al., 2014)
• a seasonal cycle in latitudinal location and strength
• a complex westward tilted vertical structure with overturning zonal circulation
• a variability in the characteristics between individual MJO events (Majda et al., 2019).

The more large scale features of the MJO (cf. Figure 2.2) are commonly referred to as the MJO
skeleton, as opposed to the MJO muscle which signiies details of the more reined structure within
the MJO envelope, such as e.g. westerly wind bursts or complex convective features (Majda et al.,
2019).

Figure 2.2: MJO skeleton (large scale) structure with a deep convective center and quadrupole wind
circulation, C and A mark cyclonic and anticyclonic centers and dashed lines indicate troughs and
ridges; from Zhang (2005).

Although the MJO skeleton is well known, its underlying multiscale dynamical composition is still
subject to a lack of understanding, as mentioned previously, and the interactions are moreover com-
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plicated to simulate. Present-day GCMs therefore still struggle with good representations of both,
the skeleton and the muscle of the MJO (Stachnik et al., 2015). Since convection parameterization
naturally appears to be the most critical issue in this regard, recent progress was especially expected
from new and more sophisticated approaches in this ield (Kim et al., 2009). Indeed, success could be
achieved e.g. with multiscale models, such as the multicloud model by Boualem Khuider and Andrew
Majda (Khouider and Majda, 2006, 2007), and superparameterizations (Stachnik et al., 2015). How-
ever, an interesting innovation is also the ’Skeleton Model for Tropical Intraseasonal Variability’, which
for the irst time captures most of the large scale MJO characteristics in a computationally inexpensive
toy model with an actually very simple convection parameterization (Stachnik et al., 2015).
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2.2 The Skeleton model

In the following, the ’Skeleton model for Tropical Intraseasonal Variability’ is presented. Starting
from its underlying physical motivation and equations in 2.2.1, the algorithm of the vertically and
meridionally fully truncated nonlinear deterministic model version is derived in 2.2.2. Thereafter, the
eigenmodes of the linearized model version are described in 2.2.3 as they are useful to understand the
expression of diferent tropical wave types, amongst them the MJO, in the model. The properties
of the model version that is used in this work, and especially its energy balances, are introduced in
2.2.4. Lastly, in 2.2.5, the setup of an MJO index that measures the strength of the MJO based on
the linearized Skeleton model’s eigenmodes is explained.

2.2.1 Physical motivation

The Skeleton model is a simple and computationally inexpensive toy model for tropical atmospheric
motions on intraseasonal and planetary scales, i.e. mainly the MJO. It extends the well-known
Matsuno-Gill model, which is considered without dissipation at large scales except for a constant
radiative cooling. Instead, the diabatic heating is coupled to an additional equation for the envelope
of synoptic scale convective activity (a), which is itself connected to planetary scale lower tropospheric
moisture anomalies (q) through a nonlinear oscillator relationship. This yields the following physical
equations for the model’s nonlinear, deterministic form, that was introduced in Majda and Stechmann
(2011) and used in this work:

∂u

∂t
− yv − ∂θ

∂x
= 0

yu− ∂θ

∂y
= 0

∂θ

∂t
−
(

∂u

∂x
− ∂v

∂y

)

= Ha− sθ

∂q

∂t
+Q

(

∂u

∂x
+

∂v

∂y

)

= −Ha+ sq

∂a

∂t
= Γqa.

(2.8)

All meanings and dimensions of the variables in the above equations, together with the essential phys-
ical constants, are explained in Tables 2.1 and 2.2. The underlying assumption of the Skeleton model
is thus that the MJO is a neutrally stable wave at planetary scale, which is driven by convective
instabilities at sub-planetary scale. The latter are condensed in their planetary scale envelope, whose
evolution is described by the simple parameterization in the last equation. This was derived from
a combination of observations, modelling, and theory. Since the growth rate Γ represents a strong
approximation of any sub-planetary scale processes, whose details are neglected, the model’s results
are only meaningful at large scales (approx. |k| ≤ 5

40000 km
, ω ≤ 1

30 days
). [Majda and Stechmann,

2011] Nonetheless, the Skeleton model has gained recognition (and its name) as it manages to repro-
duce the main large scale characteristics of the MJO. Its typical phase speed, horizontal structure, and
dispersion relation are for the irst time captured in such a minimal framework (Khouider et al., 2013).

Furthermore, for a complete understanding of the model, the following diferences and extensions
to the Matsuno-Gill model should be noted (see page R33 of Khouider et al. (2013) for the full
dimensional equations):

• Potential temperature θ replaces pressure as given by the hydrostatic relationship formulated in
terms of θ: 1

ρ0
∂p
∂z = g θ

θ0
(2.9) (Khouider et al., 2013; Majda and Stechmann, 2009).
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• The vertical structure is deined diferently than in Equation 2.1. Here, only the irst baroclinic
mode is regarded (Majda and Stechmann, 2009), i.e. u ≈

√
2u1 cos(

π
H z), v ≈

√
2v1 cos(

π
H z),

p ≈
√
2p1 cos(

π
H z), θ ≈

√
2θ1 sin(

π
H z), and the vertical wind anomalies w ≈

√
2w1 sin(

π
H z) (2.10)

(Khouider et al., 2013). The slight abuse of notation u1 → u, v1 → v, w1 → w, p1 → p, θ1 → θ
equally returns the shallow water equations for the dry dynamics as already mentioned by Gill
(1980).

• q is not actually a irst baroclinic mode variable (Thual and Majda, 2016a), but it can be deined
as such (Majda and Tong, 2016). Since for q =

√
2q1 sin(

π
H z) (2.11) , q = q1 at height z = H

4 ,
i.e. in the lower troposphere, this deinition would be consistent.

• a is not a irst baroclinic mode variable but the envelope of integrated convective activity (Majda
and Tong, 2016). Furthermore, it is the single variable that is not deined as a deviation from
the radiative convective equilibrium (RCE), i.e. it is constrained to positive values (Majda and
Stechmann, 2011). H is a freely selectable scaling constant, that is irrelevant to the dynamics
(Majda and Stechmann, 2009).

• The nondimensional mean background vertical moisture gradient Q is constrained to values
0 < Q < 1 (2.12) to guarantee a positive total energy in the system (Majda et al., 2019).

• The background radiative cooling and latent heating, sθ and sq, are often chosen to be equal
for reasons of simplicity. However, this setting does not allow for a Walker circulation (Ogrosky
and Stechmann, 2015). Moreover, their shapes can be modelled to mimic realistic backgrounds,
e.g. with a warm pool to represent the western Paciic as in Majda and Stechmann (2011).

variable meaning dimension
dimensionalization
constant

t time s
√

π
NHβ

x, y zonal, meridional position m
√

NH
πβ

u, v zonal, meridional velocity anomalies m
s

NH
π

θ potential temperature anomalies K HN2θ0
πg

q lower tropospheric moisture anomalies none: mass of liquid
mass of air

cp
Lv

HN2θ0
πg

sθ, sq, Ha
background radiative cooling, background
latent heating, convective activity

K
s

√

H3N5θ2
0
β

π3g2

Table 2.1: Meanings and dimensions of the variables in the Skeleton model (Stechmann and Majda,
2015).

constant meaning
approximate
value

β meridional derivative of Coriolis parameter 2.28 · 10−11 1
ms

H tropopause height 16 km
N2 Brunt-Väisälä frequency 10−4 1

s2

g gravitational acceleration 9.8 m
s2

θ0 surface potential temperature 300K
cp speciic heat of dry air at constant pressure 1006 J

kg K

Lv latent heat of vaporization 2.5 · 106 J
kg

Table 2.2: Essential physical constants in the Skeleton model (Stechmann and Majda, 2015).
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2.2.2 Numerical implementation

The numerical solution of the Skeleton model equations is based on an expansion and subsequent
truncation of all variables in terms of the PCFs in meridional direction (cf. Figure 2.3):

Φm(y) =
Hme

−y2

2

√

2mm!
√
π

with Hm(y) = (−1)mey
2 dm

dym
e−y

2

, m ≥ 0. (2.13)

Figure 2.3: First 6 PCFs in the Skeleton model space as used for the meridional truncation.

Those are particularly applicable for modelling of tropically conined motions since lim
y→±∞

Φm(y) = 0

(2.14). In order to arrive at the truncation, the dry dynamics part of the model’s equations is rewritten
in terms of the Riemann invariant/characteristic variables r = u−θ√

2
and l = u+θ√

2
(2.15), such that:

∂r

∂t
+

∂r

∂x
+ L−v = −Ha− sθ√

2

∂l

∂t
− ∂l

∂x
− L+v =

Ha− sθ√
2

L+r − L−l = 0

with
L− =

1√
2

(

∂

∂y
− y

)

L+ =
1√
2

(

∂

∂y
+ y

)

.

(2.16)

Since the action of the operators L− and L+ on the PCFs is known to be simply

L−Φm = −
√
m+ 1Φm+1

L+Φm =
√
mΦm−1,

(2.17)

an expansion of these equations in terms of Φm, i.e. a decomposition r(x, y) =
∑∞

m=0 rm(x)Φm(y)
and l(x, y) =

∑∞
m=0 lm(x)Φm(y) (2.18) yields:

∂K

∂t
+

∂K

∂x
= −(Ha− sθ)0√

2

MRG = 0

∂Rm

∂t
− 1

2m+ 1

∂Rm

∂x
= −

√

2m(m+ 1)

2m+ 1

(√
m(Ha− sθ)m+1 −

√
m+ 1(Ha− sθ)m−1

)

with K = r0, MRG = r1, and Rm =
√
m+ 1rm+1 −

√
mlm−1 = −2

√
mlm−1, ∀m ∈ N.

(2.19)

This variable renaming is commonly introduced for the Skeleton model as the physical structures and
propagation of the variables K, MRG (which vanishes), and Rm correspond well to the theory of un-
forced Kelvin, MRG, and ER waves of diferent meridional modes in the presence of longwave scaling
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(Majda and Stechmann, 2009). By this transformation, the model’s dry dynamics are reduced to a set
of equations for the one-dimensional model variables K and Rm in meridional spectral space. They are
of the form ∂

∂tf(x, t)+c ∂
∂xf(x, t) = g(x, t) (2.20) , which can easily be solved in zonal Fourier space by

F (k, t+∆t) = F (k, t)e−α∆t +G(k, t)1−e
−α∆t

α with α = 2πikc (2.21). The equations for the moisture
part can then subsequently be solved in physical space. (The above description of the derivation and
solution of the longwave dynamics in the Skeleton model follows the internal, unpublished report in
Thual and Majda (2013), but can also be understood from the explanations in Majda et al. (2019).)

The diabatic heating variables are now truncated at a meridional mode M ≥ 0, i.e. Ha− sθ/q(x, y) =
∑M

m=0(Ha − sθ/q)m(x) · Φm(y) (2.22). Thereby, only certain dry dynamical wave modes, i.e. K and
Rm ∀m ∈ N ≤ M + 1, are forced and the model’s complexity is reduced. [Majda and Stechmann,
2011] The truncation number M can be chosen freely, but the Skeleton model has so far most often
been used in its basic version with M = 0. An exception are studies of seasonal efects, which require
a reined meridional heating structure and thus the presence of higher meridional modes, as in Thual
et al. (2015). The strong truncation of the Skeleton model appears reasonable since the Kelvin wave
and ER waves of lowest meridional modes are considered the most important contributions to the
MJO, and an exponentially decaying meridional diabatic heating structure is a justiiable coarse ap-
proximation. Furthermore, the model shows a good representation of the MJO’s large scale structure
already for M = 0 (Majda and Stechmann, 2011).

To obtain the full Skeleton model equations for M = 0 as they are referred to in literature (Ma-
jda and Stechmann, 2011) and used in this work, R1 is renamed to R, a0 to A, and sθ0 as well as sq0 to
S. q is furthermore also truncated to the irst meridional mode, i.e. q(x, y) = Q(x) ·Φ0(y) (2.23) , and

an additional projection operator γ =
∫∞
−∞Φ0(y)Φ0(y)Φ0(y)dy =

√

2
3π
− 1

4 (2.24) (Majda et al., 2019;

Thual et al., 2014) is introduced for the interaction between the truncated variables in the nonlinear
equation:

∂K

∂t
+

∂K

∂x
= − 1√

2

(

HA− S
)

∂R

∂t
− 1

3

∂R

∂x
= −2

√
2

3

(

HA− S
)

∂Q

∂t
+

Q√
2

∂K

∂x
− Q

6
√
2

∂R

∂x
= −

(

1 +
Q

6

)

(

HA− S
)

∂A

∂t
= γΓAQ.

(2.25)

The amplitudes of the physical variables’ irst baroclinic modes can then be approximately recovered
from the truncated model variables K, R, Q and A as (Majda and Stechmann, 2011):

u(x, y) =

(

K(x)√
2

− R(x)

2
√
2

)

Φ0(y) +
R(x)

4
Φ2(y)

v(x, y) =

(

∂R(x)

∂x
− HA(x) + S(x)√

2

)

Φ1(y)

3

θ(x, y) =

(

−K(x)√
2

− R(x)

2
√
2

)

Φ0(y)−
R(x)

4
Φ2(y)

q(x, y) = Q(x) · Φ0(y)

Ha(x, y) = HA(x) · Φ0(y).

(2.26)

There is thus a more complicated horizontal structure in the dry dynamic variables although the
moisture variables are truncated to be ∝ Φ0. Certainly, these results contain some truncation er-
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ror, especially since the nonlinear interaction of Q and A could act on higher modes of a which are
neglected. Nevertheless, this highly truncated model version still manages to simulate the most im-
portant large scale characteristics of the MJO (Majda and Stechmann, 2011).

The default settings for the physical and numerical discretization parameters in the Skeleton model
that are commonly used in literature are arbitrary, but plausible choices. They are listed in Table
2.3. Since no spatial inite diferencing is needed in the algorithm but any spatial derivatives are cal-
culated in zonal Fourier space, it is especially the discretization in time that is critical for the model’s
performance.

parameter meaning default value (nondim.)
L zonal length of domain 26.6, i.e. 40000 km
∆x distance between zonal gridpoints 0.4167, i.e. 625 km
nx number of zonal gridpoints 64
∆t length of time steps 0.2083, i.e. 1.66h
Γ convective activity growth rate 1.66

Q mean background vertical moisture gradient 0.9

H scaling constant for convective activity 0.22

sθ/sq
background diabatic cooling/heating (value at
all gridpoints)

0.022

Table 2.3: Default settings for parameters in the Skeleton model (Majda and Stechmann, 2011).

2.2.3 Linearized model’s eigenmodes

The most straightforward way to understand the Skeleton model’s ability to represent tropical waves
is to look at the plane wave eigenmodes of its linearized version (Majda and Stechmann, 2009; Ma-
jda et al., 2019). Therefore, the last equation is modiied to ∂A

∂t = γΓAQ (2.27) with A = S (2.28)
and A = A + A′ (2.29). This assumes small convective perturbations A′ compared to the back-
ground S. With the ansatz X(x, t) = X̃ei(kx−ωt) (2.30) for the state vector in model variables

X(x, t) =









K(x, t)
R(x, t)
Q(x, t)
A′(x, t)









(2.31) and the assumption of S(x) = const. (2.32), the model can then be re-

duced to an equation of the form −iωX̃ = (ikC1+C2)X̃ (2.33)with matrices C1 and C2. By this, four
diferent eigenmodes with complex amplitudes X̃i

k and real frequencies ωi
k are obtained for each chosen

zonal wavenumber k. Moreover, for any eigenmode characterized by (k, ωi
k, X̃i

k), there exists a corre-
sponding eigenmode characterized by (−k, −ωi

k, X̃i
k
∗). Consequently, four purely real model states,

that are propagated with phase speeds
ωi
k
k , are given by Xreal(x) ∝ X̃i

ke
ikx + X̃i

k
∗e−ikx ∝ ℜ

(

X̃eikx
)

(2.34) for any k. Here, ℜ indicates taking the real part and the resulting model states can be shifted
by an arbitrary phase.
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Figure 2.4: Physical structures of the eigenmodes in the linearized Skeleton model with standard
parameter values for zonal wavenumber k = 2

40000 km
, arrows: wind ield, blue lines: contours

of pressure anomalies (solid=positive, dashed=negative), black lines: contours of moisture anoma-
lies (solid=positive, dashed=negative), grey shades: convective activity anomalies (dark=positive,
light=negative).
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For the standard model settings and in case of small zonal wavenumbers, i.e. length scales at which
the Skeleton model assumptions are justiied and its results interpretable, these four basic wave modes
for every k match approximately with certain theoretical or observed tropical waves. Namely, they
show characteristics of dry Kelvin, MJO, moist Rossby, and dry Rossby waves. The remarkable
accordance is apparent in both, their phase speeds and dispersion relations, as well as in their physical
structures (cf. Figure 2.4). The latter are determined by the amount of projection on the unforced
wave structures K and R, and of coupled convection Q and A. Dry Kelvin and dry Rossby modes show
only little coupling to convection and typical Kelvin or Rossby like phase speeds, dispersion relations,
and wind-pressure structures as in theory. Though, it should be noted, that they involve some coupling
to convection and are thus distinct from the completely dry structures K and R. In contrast, moist
Rossby modes are more strongly coupled to convection and share some, although incomplete, features
with observed CCEWs. However, the most complete accordance with observations is present in the
MJO eigenmodes of the Skeleton model. These show a strong coupling to convection with the typical
pattern of an eastward moving convective center lead by moisture anomalies, and their dry dynamic
structure is of mixed Kelvin and Rossby wave type with a quadrupole wind circulation that is consistent
with observations of the MJO at large scales. Moreover, the phase speeds and dispersion relation of
the MJO modes for small zonal wavenumbers resemble observations robustly, not only for the standard
settings but over a wide range of parameter choices (Majda and Stechmann, 2009). The eigenvalues
and eigenvectors for the MJO modes with k ∈ {1, 2, 3} 1

40000 km
in the linearized Skeleton model with

standard parameter values are listed in Table 2.4.

k in 1
40000 km

ω in 1
days K̃ R̃ Q̃ Ã′

1 40.0 0.3224i −0.8521i −0.1465i 0.3800
2 35.4 0.2137i −0.7678i −0.2472i 0.5661
3 35.1 0.1627i −0.6728i −0.2977i 0.6771

Table 2.4: Frequencies (eigenvalues) and complex amplitudes (eigenvectors) of the plane wave MJO
eigenmodes for zonal wavenumbers k ∈ {1, 2, 3} 1

40000 km
in the linearized Skeleton model with standard

parameter values.

These eigenmodes of the linearized Skeleton model version are not only interesting with respect to
the representation and propagation of the associated wave types in the model but can furthermore be
used for the purpose of model initialization with plausible wave activity. A realistic initialization is
especially important due to the deterministic nature and conservation properties of the model version
that is used in this work.

2.2.4 Properties of the highly truncated nonlinear deterministic model

The linearized version of the Skeleton model with zonally constant background diabatic cooling/heating
has plane wave eigenmodes, whose major characteristics correspond well to certain tropical wave types,
one of them the MJO. It thus allows for a theoretic investigation of how these basic waves are expressed
in the model. However, more realistic model simulations beyond simple plane wave propagations are
obtained with the nonlinear version (cf. Equations 2.25), and even more if combined with a re-
ined background forcing. One possibility is e.g. a warm pool that mimics the warm western Paciic
SWP(x) = Sconst. ·

(

1− α cos
(

2πx
L

))

(2.35) with typically α = 0.6 (Majda et al., 2019) and Sconst. equal
to the default background. These settings allow for interactions between the basic waves, that are oth-
erwise propagated separately in the linearized model. It was shown in Majda and Stechmann (2011)
that this results in more realistic occurrences of now individual MJO events, while all important char-
acteristics of the MJO eigenmodes, i.e. their coarse structure, phase speed, and the dispersion relation,
are retained. The MJO in the nonlinear model agrees especially well with observations with regard
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to its variability in strength, lifetime, and its preferential localization over the warm pool. Moreover,
there are occasional realistic standing oscillations to the west of the warm pool at beginnings of MJO
events.

Figure 2.5: Power spectra (2D Fourier transforms in zonal space and time) of the four physical variable
ields, calculated from a 1 year model run with the standard coniguration, scaled by their respective
climatological mean absolute deviations, superimposed dispersion curves of the linearized model’s
eigenmodes.

The nonlinearity and wave interactions in the Skeleton model result in a positively skewed, i.e. non-
Gaussian, probability distribution for a (Majda and Stechmann, 2011). Since this is of great impor-
tance for DA, the still easy to handle nonlinear model with warm pool background is used as standard
coniguration throughout this work. The power spectra of all variables (cf. Figure 2.5) and Hovmöller
diagram of convective activity (cf. Figure 2.6) from a model run with these settings illustrate its above
mentioned features. The former shows in particular that the MJO signature is weakest on potential
temperature.
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Figure 2.6: Hovmöller diagram of convective activity anomalies during a 5 year model run with the
standard coniguration.

Moreover interesting for DA purposes – although only approximately held in the model’s meridionally
truncated algorithm – are the two energy balances (Majda et al., 2019) that are incorporated in the
nonlinear Skeleton model’s physical equations (cf. Equations 2.8). They are valid in case of equalized
background forcing sθ = sq, as assumed by default in this work, and named according to the respective
involved variables:
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• moist static energy conservation: ∂(θ+q)
∂t −

(

1−Q
)

(

∂u
∂x + ∂v

∂y

)

= 0 (2.36)

• total energy conservation (consisting of contributions from dry kinetic energy, potential energy,
moist potential energy and convective energy):
∂
∂t

(

u2

2 + θ2

2 + 1
2

Q

1−Q

(

θ + q

Q

)2
+ H

ΓQ
a− s

ΓQ
ln (a)

)

− ∂
∂x (uθ)− ∂

∂y (vθ) = 0 (2.37).

Because of the zonal periodicity and the tropical coninement in the Skeleton model, the domain
integrated values of these energies are conserved in time.

2.2.5 Skeleton model based MJO index

Due to the bad theoretical understanding of the MJO, it is diicult to separate its pattern from data
and to measure its strength. For this reason, so far mostly two diferent approaches have been used
to set up MJO indices, that are both based on empirical MJO characteristics. Either, the data can be
iltered for the typical MJO phase and group velocities at the relevant time and length scales, which
can be obtained from the Wheeler-Kiladis diagram (cf. Figure 2.1). Or otherwise, the data can be
projected on the most important empirical orthogonal functions (EOFs), i.e. the patterns that show
the largest climatological variance on the concerned time and length scales. [Wheeler and Hendon,
2004] However, the Skeleton model provides a new option to base an MJO index on a theoretical
structure without any explicit need for temporal iltering of the data, namely by projections on the
eigenmodes of the linearized model version. If applied to reanalysis data, this Skeleton model based
MJO index was shown to correlate highly with observed historical MJO events as well as other well-
established MJO indices. [Stechmann and Majda, 2015] Moreover, it can not only be used to extract
MJO patterns from real data but is also very suitable to investigate the MJO evolution within the
Skeleton model itself, as necessary for this work.

To calculate the Skeleton model based MJO index as in Stechmann and Majda (2015), i.e. to ex-
tract the MJO contribution from data based on the linearized Skeleton model’s MJO eigenmodes for
diferent zonal wavenumbers k, the atmospheric state has to be expressed in terms of the zonally
Fourier transformed model variables. The vectors X̃(k) can then be projected on the corresponding
MJO eigenvectors eMJO(k) for a reasonably chosen range of k, e.g. k ∈ {1, 2, 3} 1

40000 km
. A zonal

Fourier back transform subsequently yields the MJO strength distribution in physical space (called
MJO Skeleton signal or index, named MJOS(x, t)). In order to avoid unrealistic projections of the
other eigenmodes/wave types on the MJO structure, it can be helpful to use an inner product M

with respect to which the eigenmodes ei(k) are orthogonal. Such is given by the Hessian matrix of
the linearized model’s total energy, that can be expressed in model variables. The projection step can
thus be extended from a simple scalar product to:

eMJO(k)
†MX̃(k)

with

M =













1 + 1
2

Q

1−Q
1
4

Q

1−Q − 1√
2

1
1−Q 0

1
4

Q

1−Q
3
8 + 1

8
Q

1−Q − 1
2
√
2

1
1−Q 0

− 1√
2

1
1−Q − 1

2
√
2

1
1−Q

1
Q

1
1−Q 0

0 0 0 1
γΓQS













.

(2.38)

27



2.3 Data assimilation

The subsequent section presents relevant DA foundations. After a general introduction to sequential
Bayesian iltering and its particularities when applied in meteorology in 2.3.1, the stochastic EnKF
is described together with the conventional tuning methods of localization and inlation in 2.3.2 and
2.3.3, respectively. The idea behind and realization of its recently proposed extension for analysis
constraints is explained in 2.3.4. As those are in this work mainly used to address errors due to non-
Gaussianity in the EnKF, inally, some general information on methods to measure the PDF shape of
an ensemble is given in 2.3.5.

2.3.1 Sequential Bayesian state estimation

The aim of DA is to derive the best estimate for the probability density function (PDF) of the
atmospheric state xk at a current time tk given observations [yk, ...,y0] at times [tk, ..., t0]. Provided
that the observations at diferent times can be assumed to be approximately independent – what could
be violated e.g. due to biases or time correlated errors –, Bayes theorem yields the following relation
with normalization constant C:

p(xk|[yk, ...,y0]) ≈ C · p(yk|xk)p(xk|[yk−1, ...,y0]). (2.39)

Thus, if an estimate for the time evolution of the PDF p(xk−1|[yk−1, ...,y0]) → p(xk|[yk−1, ...,y0])
is available, the current best estimate at time tk can be derived directly from the latest estimate
at time tk−1 once an estimation for the observation likelihood p(yk|xk) has been made. Sequential
DA techniques use this recursive relationship to generate initial conditions for NWP in subsequent
forecast/propagation and analysis/update cycles, i.e. assimilating any observations right at the time
they are taken. [Hamill, 2006]

An exact description for the PDF’s time evolution in the general case of a nonlinear atmospheric
model, that contains stochastic components representing its uncertainty due to model error and chaos,
is given by the Fokker-Planck equation (also known as Kolmogorov forward equation) (Hamill, 2006).
However, taking into account the large state spaces that are common in atmospheric applications, with
dimensions up to ∝ 108 in global NWP (Janjic et al., 2017), its integration, as well as the Bayesian
update would have an extreme computational load (Hamill, 2006). Therefore, the exact sequential
Bayesian state estimation remains a theoretical foundation in the atmospheric sciences while real
world applications use several simpliications and adaptions (Hamill, 2006). The main objective of DA
research is thus to ind suitable algorithms that deal eiciently with the high dimensional PDF under
various conditions and to mitigate errors that arise from imperfections in those.

A common irst step for the simpliication of the Bayesian update is to assume Gaussian PDFs p(yk|xk)
and p(xk|[yk−1, ...,y0]), i.e. to neglect all moments of higher order than their respective means yk and
xb
k and covariances Rk and Bk, which reduces Equation 2.39 to:

p(xk|[yk, ...,y0]) ≈
C

(2π)n
√

det(Bk) · det(Rk)
e−Jk

with Jk =
1

2
(xk − xb

k)
TB−1k (xk − xb

k) +
1

2
(yk −Hk(xk))

TR−1k (yk −Hk(xk)).

(2.40)

In the terminology common in the atmospheric sciences, xb
k, Bk, yk, and Rk are called background,

background error covariance, observation, and observation error covariance and Hk is the observation
operator that projects from the n-dimensional state space into the m-dimensional space of the ob-
servations. Furthermore, the current best estimate will in the following be indicated as analysis xa

k.
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[Janjic et al., 2017]

If the covariance matrix of the atmospheric state’s PDF is estimated independently, e.g. from cli-
matology as in the variational methods 3DVar and 4DVar, the update step is thus cut down to the
minimization of the cost function Jk to get the PDF’s mean. This best estimate can subsequently be
propagated with any model in the propagation step. However, in case of persistent Gaussianity in all
PDFs, the evolution of both, mean and covariance of the state estimate, can be described analytically.
Starting from initial Gaussianity, this condition is fulilled in case of a linear model Mk,k−1 with ad-
ditive Gaussian model error with zero mean and covariance Qk,k−1, and a linear observation operator
Hk. The set of equations for the propagation and update step is then called Kalman ilter:

• forecast step:

xb
k = Mk,k−1x

a
k−1

Pb
k = Mk,k−1P

a
k−1M

T
k,k−1 +Qk,k−1

(2.41)

• analysis step:

xa
k = xb

k +Kk(yk −Hkx
b
k)

Pa
k = (I−KkHk)P

b
k

(2.42)

with

Kk = Pb
kH

T
k (HkP

b
kH

T
k +Rk)

−1. (2.43)

Here, in conformity with the usual notation, Pb
k and Pa

k are the background and analysis error covari-
ance matrices in the Kalman ilter and Kk is called Kalman gain. Note furthermore, that for these
equations to hold, background and observation error must be uncorrelated. The calculation of the
analysis in the Kalman ilter equals the result of the above cost function minimization in case of linear
H and Pb

k = Bk. [Janjic et al., 2017]

The low dependent error statistics in the Kalman ilter are an advantage over the other aforemen-
tioned algorithms (Janjic et al., 2017). However, although the full Bayesian estimation has been
largely reduced, the propagation of the error covariance matrix in the forecast step still comes at a
high computational cost for large state spaces (Hamill, 2006). Evensen (1994) addressed this problem
with his proposal of the Ensemble Kalman Filter (EnKF), which propagates only a Monte Carlo sam-
ple of the analysis covariance matrix and draws a sparse approximation of the background statistics
in the next update step from the ensemble. This approach has moreover the beneit that a nonlinear
model does not have to be linearized as the Fokker-Planck equation is approximately solved with the
ensemble (Evensen, 2003). Furthermore, depending on the exact algorithm, nonlinear observation
operators can also be used, which results in more exact statistics (Janjic et al., 2017).

EnKFs have become the basis for several present-day DA systems (Houtekamer and Zhang, 2016),
not least also due to their simple implementation compared to 3DVar and 4DVar and the possibil-
ity to use their outcome directly for ensemble forecasts (Hamill, 2006). Yet, the ensemble approach
comes with additional diiculties such as sampling errors, that make further adaptions, mostly well
tuned localization and inlation, inevitable (Janjic et al., 2017). Furthermore, in the frequent case of
strongly nonlinear models, the underlying requirement of persistent Gaussianity can be signiicantly
hurt, such that methods to handle Non-Gaussianity within EnKFs have become a special research
focus (Bocquet et al., 2010). This is not least due to the fact that alternative methods that can
handle non-Gaussianity directly, e.g. particle ilters, have so far not reached suicient robustness and
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applicability (Janjic et al., 2017; Ruckstuhl and Janjić, 2018). Additional error sources, i.e. model
errors (Anderson, 2009) and certainly also missspeciications of Qk,k−1 or Rk (Raanes et al., 2019) are
not of relevance for this work due to the identical twin experiment approach.

Another element that has to be speciied in any EnKF is the initial ensemble, which should relect
the prior knowledge about the system before any current observations were taken (Evensen, 2003).
Thus, in the atmospheric sciences, using climatological information to generate the initial states is a
reasonable choice if no other irst guess is available. However, the inluence of the initial ensemble’s
details reduces over time in the iltering and slight missspeciications do not lead to severe diferences
in the ilter quality (Houtekamer and Zhang, 2016). The latter is then rather determined by the
observations, the forecast model, and the ilter tuning and algorithm (Houtekamer and Zhang, 2016).

2.3.2 Stochastic Ensemble Kalman Filter theory

There are two fundamentally diferent options how to resample the ensemble with updated statistics
for the next propagation step in an EnKF. One way is to generate a new ensemble deterministically
by updating the mean and ensemble perturbations separately. Therefore, the background ensemble
perturbations are multiplied with the square root of a matrix that is calculated such that the error
covariance is updated according to the Kalman ilter equations. Since the square root formulation
is certainly not unique, various such ilters (e.g. ETKF, EnSRF, EAKF) exist. They are contrasted
by the stochastic EnKF, which employs a full Monte-Carlo approach, i.e. the ensemble members are
updated individually with artiicially perturbed observations whose mean is yk and covariance Rk.
[Janjic et al., 2017] The fact that this procedure results in an analysis ensemble with the desired
statistics can be understood from the following detailed presentation of the algorithm as in Burgers
et al. (1998). Here, Mk,k−1 is the now potentially nonlinear model, i the index indicating individuals
of the N ensemble members, and rik and qi

k,k−1 are random samples from the observation and model
error covariance matrices, respectively, that were corrected for their sampling errors to have zero
means:

• forecast step:

x
b,i
k = Mk,k−1(x

a,i
k−1) + qi

k,k−1 (2.44)

• analysis step:

x
a,i
k = x

b,i
k +Kk

(
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b,i
k )

)

(2.45)

with
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−1 (2.46)
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From this follows:

x
a,i
k = x

b,i
k +Kk

(

yk −Hk(x
b,i
k )

)

and
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k −KkP
b
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(2.48)

As the stochastic EnKF opens up easier possibilities to modify individual ensemble members, e.g. by
constraints in the update, compared to square root ilters, it was used as the underlying algorithm in
this work although it is more prone to errors arising from spurious correlations between the background
and observation ensembles (Houtekamer and Zhang, 2016).

2.3.3 Conventional tuning by localization and inlation

The single error source that is inherent to any EnKF independent of the settings are sampling errors.
This is due to the fact that the atmospheric state’s PDF can only be fully represented in the theoret-
ical limit of N → ∞, but the computational resources set an upper limit on the number of afordable
ensemble members in practice (Houtekamer and Zhang, 2016). The impact of sampling errors on the
behavior of an EnKF is not evident on irst sight, but it was shown and also theoretically explained
(van Leeuwen, 1999; Raanes et al., 2019) that they lead to a self enforcing decrease in ensemble spread
that saturates at a level with far underestimated variance. This efect is known as ilter divergence
due to inbreeding. Afected are especially small ensembles as they are often found in the atmospheric
sciences with typically N ∝ 102 and thus N ≪ n,m (Houtekamer and Zhang, 2016) because the
sampling error decreases ∝ 1

N (Evensen, 2003). Methods to mitigate the ilter divergence are therefore
needed, and particularly two tuning operations, namely localization and inlation, have largely shown
positive impact and have become conventional tools for EnKF tuning (Houtekamer and Zhang, 2016).
Those address the root cause, i.e. wrong correlations in the background error covariance, and the
efect of underestimated variances, respectively.

Localization aims to alleviate erroneous correlations in the background error covariance matrix, that
is used to calculate the Kalman gain. A common approach is to assume approximate isotropy in the
error covariance, meaning that long distance correlations are less trusted. In that case, the so called
covariance localization, which was introduced by Houtekamer and Mitchell (2001), can be used. The
background error covariance matrix is then Schur-multiplied with a positive semideinite localization
matrix C that smoothly dampens correlations according to their distance, i.e. Pb

kL = C ◦ Pb
k (2.49).

This yields the localized background error covariance matrix Pb
kL. To calculate the amount of damp-

ing depending on the distance, frequently the following ifth order function, that was proposed by
Gaspari and Cohn (1999) and is therefore called Gaspari-Cohn (GC) function, is used. It approxi-

mates a Gaussian with mean 0 and standard deviation
√
0.3d
2 , but is compactly supported, such that

correlations equal 0 beyond the distance d (cf. Figure 2.7):
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(2.50)

However, localization can also be based on other principles than isotropy. In particular it can be
meaningful to respect the climatological strength of covariances in the localization matrix. An overall
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guiding principle on how to tune the localization radius for covariance localization is missing, but gen-
erally speaking, the localization radius should be chosen such that the amount of true in proportion to
erroneous information is optimized, i.e. it should decrease with ensemble size. If too little information
about true correlations is retained, balances can be largely afected by localization. [Houtekamer and
Zhang, 2016]

Inlation, in contrast, addresses the negative inluence of sampling errors by artiicially increasing
the underestimated error covariance, and should thus only be applied as a second measure in com-
bination with localization. However, it can partly also account for other overlooked error sources,
such as unknown model error or non-Gaussianity, and is therefore most often applied to the back-
ground ensemble before the next assimilation step (Anderson, 2009). A common approach, the so
called multiplicative inlation, is to rescale the ensemble perturbations with an inlation factor β, i.e.

x
b,i
k = β · (xb,i

k − x
b,i
k ) + x

b,i
k (2.51) . β can either be chosen as a constant slightly larger than 1, or be

estimated adaptively throughout the assimilation cycles based on some self-diagnostics of the ilter,
for which several algorithms have been proposed. [Houtekamer and Zhang, 2016]

Besides the explained two particular examples, there exists furthermore a range of related, but nonethe-
less diferent localization and inlation options, e.g. domain localization (Janjic et al., 2017), additive
inlation or relaxations to prior perturbations or spread, just to name a few (Houtekamer and Zhang,
2016). However, for the EnKF setup in the simple experiment framework in this work, the above
explained methods are suicient.

Figure 2.7: Gaussian and corresponding Gaspari-Cohn covariance localization functions with standard
deviation 1, cutof-distance d of Gaspari-Cohn function indicated.

2.3.4 Analysis constraints

In a classical EnKF algorithm as introduced above, all prior knowledge about balances between dif-
ferent state space locations, which is used to spread new information from observations in the update
step, is provided by the estimated background error covariance. Yet, often there are additional known
physical relations of the atmospheric state that are not incorporated in these correlations, either due
to an erroneous background error covariance matrix, e.g. when balances are harmed by localization
(Kepert, 2009), or because the system statistics can not be fully described by covariances due to
non-Gaussianity (Simon, 2010). The thereby produced dynamically inconsistent states are potential
signiicant error sources, e.g. as they can lead to artiicial wave activity in following model propaga-
tions due to a readjustment to the model climate (Houtekamer and Zhang, 2016). In DA research,
this issue has been addressed by its root causes in various ways, reaching from suggestions for better
localization, e.g. after space transformations to more isotropic state spaces (Kepert, 2009), to algo-
rithms that aim to better adapt EnKFs for non-Gaussian iltering (Bocquet et al., 2010). The latter
also cover a wide spectrum, ranging from iterative iltering and hybrid algorithms e.g. in combination
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with 3DVar, 4DVar or particle ilters (Sakov et al., 2012), to the artiicial generation of Gaussian con-
ditions, e.g. by simulating the PDF with Gaussian mixtures or by Gaussian anamorphosis (Bocquet
et al., 2010). However, although it is long since common practice in forecast model development, the
direct incorporation of exact state constraints, such as e.g. mass, energy, or enstrophy conservation
or restrictions to positivity, has only rather recently been proposed for the update algorithms of DA
schemes (Janjić et al., 2014). In operational NWP, very simple adjustment mechanisms, such as trun-
cations of undesirably negative values to zero, are still often applied (Janjić et al., 2014).

An algorithm that directly accounts for application dependent constraints in an update step and
is based on the stochastic EnKF was recently developed by Janjić et al. (2014), and has shown irst
positive impacts when applied in toy model settings (Janjić et al., 2014; Zeng et al., 2017). The un-
derlying idea is to generate a physically more plausible analysis ensemble and thereby a more accurate
estimation for the statistics by adding the constraints to the updates of all individual ensemble mem-
bers in Equation 2.45. Since the Kalman update can also be expressed as a cost function minimization
(cf. Chapter 2.3.1), this yields N constrained numerical optimization problems of the general form:

min
x
i
k

J i
k

subject to cl(x
i
k) = 0, l ∈ E and/or cm(xi

k) ≤ 0, m ∈ I

with J i
k =

1

2
(xi

k − x
b,i
k )TPb

k
−1

(xi
k − x

b,i
k ) +

1

2
(yi

k −H(xi
k))

TR−1k (yi
k −H(xi

k)).

(2.52)

An analytic formulation of such a problem is not possible independent of the exact constraints. Nev-
ertheless, the linearity or nonlinearity of the observation operator, as well as the type of constraints,
i.e. linear, convex or nonlinear-nonconvex, and equality (cl, l ∈ E) or inequality (cm, m ∈ I) as they
are listed in the above equation, are important for the complexity of the numerical optimization and
the guarantee of a global minimum (Janjić et al., 2014). Based on numerical optimization theory, it
is useful to distinguish the following circumstances for the above equation (Optimization Toolbox™
User’s Guide, R2019b, Chapter 2):

type of
optimization
problem

objective
function
requirements

constraints
requirements

local
minimum
= global
minimum

available solution
algorithms

quadratic
programming

quadratic, i.e.
linear H

linear equality
and/or linear
inequality

yes

eicient quadratic
programming algorithms,
e.g. active set, interior
point

convex
programming

quadratic, i.e.
linear H

linear equality
and/or convex
inequality

yes

local nonlinear
programming, e.g.
sequential quadratic
programming

nonlinear
programming

arbitrary
nonlinear

arbitrary
nonlinear

no

global nonlinear
programming (starting
local searches at many
points)

In accordance with the irst case, which is frequent in the atmospheric sciences since many impor-
tant physical constraints are linear, the new algorithm was called Quadratic Programming Ensemble
(QPEns) (Janjić et al., 2014). Certainly, it can be applied in nonlinear settings as well (Zeng et al.,
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2017) with the disadvantages of higher computational demand and potential need for global mini-
mization. However, it must be noted that the ensemble mean is not automatically constrained if
nonlinear constraints are imposed on the individual ensemble members. If this mean should be used
as best estimate for forecast purposes, a separate constrained calculation of the best estimate can thus
become necessary. Beyond that, the QPEns could potentially also be combined with other ensemble
DA methods (Janjić et al., 2014).

The algorithm used to solve the minimization problem should be chosen as optimal trade-of between
eiciency, accuracy and robustness (Nocedal and Wright, 2006). In this work, the available algorithms
are restricted to the several available options in the MATLAB R2019b Optimization Toolbox. The
ones of relevance for this work can be assigned to the following two general categories:

• active-set methods: problem solved sequentially with reduced sets of active equality constraints;
these active sets are updated after each iteration

• interior-point methods: problem solved sequentially without inequality constraints but with
penalty terms in the objective function for values close to inequality constraint boundaries; the
penalty terms are updated after each iteration.

While interior-point algorithms have the beneits of a smaller memory demand and higher eiciency
in solving large problems, their penalty terms keep the solution away from the inequality constraint
boundaries, which can lead to a slightly reduced accuracy of the result. [Optimization Toolbox™
User’s Guide, R2019b, Chapter 2] A more thorough introduction to constrained optimization theory
that goes beyond these coarse descriptions is not given here. Further algorithmic details are not
important in this work’s toy model setting as it allows for suiciently accurate results at reasonable
computational expense with any of the available algorithms. However, detailed information on the
Karush-Kuhn-Tucker (KKT) optimality criteria and various solution algorithms can be found in No-
cedal and Wright (2006). Moreover, for global optimization, the Global Optimization Toolbox was
available.

Whereas the QPEns represents the exact solution of the stochastic EnKF equations subject to precise
constraints, a more approximate, but in certain points beneicial alternative is to include equality
constraints as so called soft constraints via pseudo-observations. For a constraint D(xi

k) = d (2.53),
d is then taken as observations, D replaces the observation operator H, and furthermore nonzero
constraint tolerances are speciied as variances of a diagonal pseudo-observation error covariance ma-
trix. The latter avoids a singular observation error covariance matrix that could potentially pose
ill-conditioning problems. This approach requires less computational resources than the QPEns, can
easily be combined with any type of ilter, thus also more sophisticated ilter algorithms beyond the
stochastic EnKF, and allows for uncertainty in the constraints, e.g. in case the true value is not
exactly known. However, constraints must be equality constraints and exactly known constraints can
be violated, although the pseudo-observation variances can be chosen rather small. [Simon, 2010]

2.3.5 Measuring non-Gaussianity

If a univariate PDF is considered, the distribution’s moments are scalar values and thus easily accessible
measures to grasp its shape. To get a feeling for its non-Gaussianity, especially the skewness γ and
kurtosis κ, that are proportional to the third and fourth order moments, are frequently used. This is
due to the fact that Gaussians are fully determined by the irst two moments, i.e. mean and variance,
and generally have γG = 0 and κG = 3. With the excess kurtosis deined as κe = κ − κG = κ − 3
(2.54), an intuitive interpretation of skewness and kurtosis is given by longer tails to the right or left
side for γ > 0 or γ < 0 and a sharper or broader peak for κe > 0 or κe < 0, respectively (cf. Figure
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2.8). The calculation of their expectation values, i.e. unbiased estimates, from an N -member sample
is straightforward (Kondo and Miyoshi, 2019; Joanes and Gill, 1998):

E(γ) =

√

N(N − 1)

N − 2

m3

m
3/2
2

E(κe) =
(N − 1)

(N − 2)(N − 3)

[

(N + 1)
m4

m2
2

− 3(N − 1)

]

with

mr =
1

N

N
∑

i=1

(xi − x)r.

(2.55)

Figure 2.8: PDF shapes for diferent values of skewness γ and excess kurtosis κe generated as Pearson
system distributions with mean µ = 0 and standard deviation σ = 1 (γ = 0, κe = 0 if not indicated
otherwise).

The above introduced measures of skewness and kurtosis provide insight into the accordance of some
important shape characteristics with a Gaussian based on simple calculations, but they do not ofer an
absolute quantiication of non-Gaussianity. For this, the Kullback-Leibler divergence (KL divergence
or also relative entropy) can be used, which comes from signal and information theory and is deined
as the information gain from a distribution q to a distribution p:

KL(p, q) =
∫

p(x) ln

[

p(x)

q(x)

]

dx. (2.56)

The KL divergence of a PDF p and its corresponding Gaussian q with equal mean and variance – the
order is important since the KL divergence is not symmetric – thus quantiies the non-Gaussianity in p.
[Bocquet et al., 2010] To calculate it from a sample, the sample’s distribution has to be approximated
e.g. via a histogram or with kernel smoothing.
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Skewness, kurtosis, and KL divergence are meaningful on irst sight and comparably simple to es-
timate in a univariate setting. However, in a multivariate case, the moments are no longer scalar
and the estimation of the samples PDF p to calculate the KL divergence becomes diicult. There-
fore, the aforementioned methods to measure non-Gaussianity are frequently applied to only single
variables, marginal sets of the higher-dimensional statespace, or other combined measures of variables
(e.g. sums) that appear reasonable. [Bocquet et al., 2010]
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3 Methods

3.1 Identical twin experiments

The following chapter describes the setup of the identical twin experiments with the Skeleton model
in detail. In 3.1.1, the idea behind the general approach is presented together with the model settings
employed in this work and the coniguration of the available state spaces for the update step. There-
after, in 3.1.2 the initialization, i.e. the construction of the initial synthetic truth and ensemble, and
the retrieval of relevant information from the model’s climatology are outlined. The generation of the
synthetic observations and their perturbations for the stochastic EnKF are explained in 3.1.3. All
variables that are unexplained in the following sections were introduced in Chapter 2 and are listed
in Appendix A.

3.1.1 General approach

This work is not aimed at the assessment of model imperfections in the Skeleton model, but at the
improvement of the DA update step under the assumption that dynamics and convection coupling
are well described by the Skeleton model. Therefore, an identical twin experiment approach was cho-
sen, meaning that a synthetic ’truth’ and synthetic ’observations’ were generated from a nature run
with exactly the same model version that was used for the ensemble propagation in the examined DA
systems. For irst simpliied experiments, this is advantageous as the model is perfect and the observa-
tions’ PDF, i.e. the distribution from which the observations were sampled, is exactly known. Model
error in Mk,k−1, or missspeciications of Qk,k−1 or Rk are thus omitted, and the error sources in the
ilter are reduced to unavoidable sampling imperfections and non-Gaussianity efects. Consequently,
those can be addressed more easily. Furthermore, the true state is given precisely, which simpliies
the assessment of the investigated DA algorithms. However, the results obtained with the identical
twin experiments in this work certainly need to be veriied later on in more sophisticated settings, e.g.
using non-identical/fraternal twins or real observations, before inding their way into operational NWP.

The typical Skeleton model setup that was used for the identical twin experiments in this work is
the fully truncated nonlinear deterministic version as in Equations 2.25 in the standard coniguration
with warmpool background that is described in Chapter 2.2.4. Any modiications of these settings
with respect to certain parameters, such as especially the warm pool intensity, are clearly indicated
throughout the following chapters.

The DA algorithms were built around the preexisting Skeleton model code in this work. Therefore,
two fundamentally diferent options, that are suitable for diferent targets, were exploited. Either, the
iltering was done in physical space (u, θ, q, a) with a back and forth variable transformation before
and after every update step , respectively, or in model space (K, R, Q, A). The former mimics a more
realistic situation with observations that are better comparable to available real data, whereas the
latter allows for a more direct investigation of the importance of the dry Kelvin and Rossby waves’
physical structures in DA for MJO prediction. However, it should be noted that the physical space
that was used here, still assumes all variables to be the amplitudes of the irst baroclinic vertical mode
meridionally projected on the irst PCF, which amongst others means that any meridional winds v
are neglected. This is possible because any projections on higher order PCFs for u, θ, and v, that
can be calculated from the model variables as in Equations 2.26, are not dynamically important, but
conditional on the projections of u and θ on the irst PCF. One can deduce this from the fact that
the latter are suicient to calculate the model variables in Equations 2.19. This truncated approach
for the physical space is especially beneicial from a computational viewpoint because the state space
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dimension is maintained at four variables with merely zonal extend throughout the transformation
from model space. The experiments are therefore equally easy to handle. Yet, it should be kept
in mind that artiicial observations of these physical variables do not represent real observations in
a full 3D physical grid, but rather combinations of observations that can be used to project on the
considered vertical and meridional structures.

3.1.2 Initialization and climatology calculation

The initialization of the Skeleton model was done with the eigenmodes of the linearized model version
as described in Chapter 2.2.3. Hence, the initially present waves could be chosen from dry Kelvin,
MJO, moist Rossby and dry Rossby modes of diferent zonal wavenumbers k and amplitudes αX

i
k,

i.e. Xini(x) =
∑

[

αX
i
kℜ

(

X̃i
ke

ikx
)]

(3.1), where ℜ again indicates taking the real part. Since the

model is deterministic and holds two energy conservation principles as explained in Chapter 2.2.4, it
is apparent that the properties of a model run are highly afected by the initialization. The standard
initialization used in this work was therefore chosen by analogy with the scenario WP-MJO in Majda
and Stechmann (2011) as a k = 2 MJO mode, and the default amplitude was set to αX = 0.05.

After the model initialization and prior to any experiments, a spin up run of typically 10 years was
conducted, during which the model climatology could build up due to nonlinearity efects and interac-
tions with the warmpool background (see Figure 7 in Majda and Stechmann (2011) for a visualisation
of the model spin up). This was followed by a longer model run, whose evolution was used to generate
a climatological ensemble. From this, some important climatological information could be retrieved,
e.g. about the precision with which the model balances are held (see Chapter 4.1.3), or the shape of
the climatological PDF such as covariances (see Chapter 4.1.2) and the amount of non-Gaussianity
in individual variables’ distributions (see Chapter 4.1.4). The inal state of this preparatory model
run was used as the initial truth. Moreover, the initial ensemble for the iltering was also taken from
this climatology as it reasonably represents the available prior information on the atmospheric state.
Furthermore, thus generated initial ensemble members could be shown to have a covariance matrix
of maximum possible rank and to be approximately orthogonal (see Chapter 4.1.1), i.e. to cover an
as wide as possible part of the state space. These properties were considered suicient and no further
requirements were imposed on the initial ensemble due to its subordinate role for the general ilter
quality after its spin up.

The selection of the states for the climatological ensemble and the initial ensemble was set up such
that the former relect an equally distributed spectrum of times throughout the seasons, and the latter
are all located at the same seasonal time, that was chosen as starting point for the irst assimilation
cycle. Although this requires an initial long model run of several years and would not have been
necessary in this work since the model was used with a uniform background over time, this procedure
was nevertheless implemented in preparation for future studies with potential seasonality.

3.1.3 Synthetic observations

The iltering update step was implemented in both, physical and model space. As the respective vari-
ables were mimiced to be observed directly for reasons of simplicity and clarity, i.e. not via combined
or otherwise related variables, the synthetic observations were also generated in both state spaces.
This had the advantage that the observation operator was always linear and had the simple shape
of a rectangular matrix of size m × n with only 0 or 1 as entries. Those were determined by the
arbitrary locations of the observations within the state space. Moreover, all observations were deined
to be uncorrelated, such that the observation error covariance matrix was diagonal. Its diagonal en-
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tries, i.e. the variances, were speciied as percentages of the variables’ climatological variances, where
10 % was taken as default value. Furthermore, the frequency of the observations could be chosen freely.

With these settings, the observations yk were generated as a Gaussian random sample with the cur-
rent truth xt

k as mean and the observation error covariance matrix Rk as covariance. The perturbed
observations rik + yk, that are required in the stochastic EnKF as explained in Chapter 2.3.2, were
subsequently equally drawn as normally distributed random states from the observation error covari-
ance matrix Rk, but with the observations yk as mean. After that, the sample rik was additionally

corrected for the sampling error in the mean rik − rik → rik (3.2) to avoid unintentional changes of the
observations yk.

For the convective activity, which is conined to positive values, the above procedure was modiied in or-
der to ensure any observations and perturbed observations of a or A to be positive. This is expected to
produce better ilter results as it helps to maintain physically plausible states. Therefore, the samples
of yk and thereafter also yk + rik were both transformed to samples of the lognormal distribution with
the same mean and variance, i.e. xi

new = CDF−1lognlCDFgauss(x
i) (3.3) for ensemble members xi. Here,

CDFgauss and CDFlognl are the cumulative distribution functions (CDFs) of the Gaussian distribution
from which the sample xi was drawn, and the lognormal distribution with equal mean and variance,
respectively. Moreover, the above described sampling error correction can not be done for convective
activity observations since again negative values could thereby be produced. As approximate solu-
tion, that does not erase the sampling error completely, but was found to draw the mean closer to
yk, the above transformation was repeated in a similar way, i.e. xi

new = CDF−1lognlCDFcurr.lognl(x
i)

(3.4). CDFcurr.lognl is the CDF of the lognormal distribution that has the actual mean and standard
deviation of the current sample. In these transformations, a lognormal distribution was chosen, in-
stead of e.g. a Γ-distribution, since lim

x→0
PDFlognl(x) = 0 (3.5) for any arbitrary values of mean and

variance. Thereby, computational problems are avoided and a physically plausible distribution of the
observations is ensured. Furthermore, the lognormal distribution approaches a Gaussian in case of
suiciently small probabilities of values close to 0.
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3.2 Data assimilation algorithms

In this section, detailed information is given on the implementation of the DA systems that were
tested. The tuning of the underlying stochastic EnKF by various localization and adaptive inlation
options is presented in 3.2.1. Thereafter, its extension by analysis constraints to a QPEns is described
in 3.2.2, where the diferent constraints and the applied optimization algorithms are speciied. Finally,
in 3.2.3, the alternative realization of any linear analysis constraints as soft constraints is explained.

3.2.1 Stochastic Ensemble Kalman Filter

As a basis for all other DA algorithms that were set up in this work, a stochastic EnKF was imple-
mented according to the description in 2.3.2. Subsequently, it was tuned with a covariance localization
and adaptive multiplicative inlation based on the methods explained in 2.3.3.

For the construction of the localization matrix, two diferent approaches were taken, that could also
be combined. Namely, it could be derived from the covariances in the climatological ensemble or a
classical distance dependent damping could be applied. The former was achieved with the following
steps that return a positive semideinite matrix whose entries ∈ [0, 1] relect approximately the typical
strength of correlations in the climatology:

• calculation of the climatological ensemble’s covariance matrix
• transforming all matrix elements to their absolute values (this produces purely positive localiza-

tion values, that do not change signs when applied to covariances, but dampen according to the
strengths of the respective climatological covariances)

• eigenvalue decomposition of the matrix and construction of a similar positive semideinite matrix
from all eigenvectors to eigenvalues ≥ 0

• if the matrix’ minimum entry is negative, adding its absolute value to all entries (this does not
afect the positive semideiniteness, but produces localization values ≥ 0)

• scaling all entries with standard deviations of the concerned variables (this does neither afect
the positive semideiniteness, but produces localization values ∈ [0, 1], i.e. as in a correlation
matrix).

The isotropy based localization matrices, that were used complementary to or instead of the thus
calculated climatological localization matrix, were constructed either with a Gaussian or with its
compactly supported approximation by a Gaspari-Cohn (GC) function. Therefore, each entry was
determined as the value of the respective function for the distance between the concerned gridpoints.
The distance that deines the standard deviation of the Gaussian, or the corresponding Gaussian in
case of a GC function, could be chosen freely. Its share of the whole domain (40000 km) is further
referred to as localization radius, e.g. a localization radius of 0.5 means that covariances of variables
with a distance of 20000 km are dampened by a factor 1

e . The Gaussian localization option was im-
plemented additionally to the GC function because the easy to handle toy model state space in this
work did not imply any necessity to use a compactly supported function for reasons of computational
expense. Therefore, the choice was taken such that the best ilter quality could be achieved. Which
localization technique of the above presented, and which localization radius for which ensemble size
are most suitable, was investigated experimentally (see Chapter 4.2.1).

Besides the localization, an additional inlation of the background ensemble was applied in each up-
date step to counteract the remaining variance underestimation. To compute the adaptive inlation
factor, two rough assumptions were made. Firstly, due to the unclear contribution of non-Gaussianity
to the ensemble spread decrease and the lack of other possibly missspeciied error sources such as
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model error, the ilter divergence by inbreeding was considered to be caused mainly by sampling er-
rors. And secondly, the localization was assumed to be perfect, i.e. removing any sampling errors
from the covariance matrix. With these approximations, the background ensemble x

b,i
k+1 could easily

be rescaled to meet the amount of variance that was theoretically expected for the analysis ensemble
of the previous update step x

a,i
k . Therefore, the inlation factor βk+1 was calculated as the quotient

between the trace of the analysis covariance matrix as given by the analytic Kalman ilter update of
the localized background error covariance matrix, i.e. the theoretically expected variances tr(Pa

kth
),

and the trace/variances of the actual ensemble derived analysis covariance matrix tr(Pa
kens

):

βk+1 =

√

tr(Pa
kth

)

tr(Pa
kens

)
=

√

√

√

√

tr
(

C ◦Pb
k − [C ◦Pb

k]H
T
k

(

Hk[C ◦Pb
k]H

T
k +Rk

)−1
Hk[C ◦Pb

k]
)

tr
(

Pa
k

) . (3.6)

Certainly, this procedure is only applicable in a toy model setting since the calculation of βk+1 would
be unafordable in case of higher state space dimensions and is not very robust with respect to changes
in the localization technique. Yet, in most cases in this thesis, it was possible to maintain a reasonable
ensemble spread with this method. Therefore, its application seemed justiiable since the aim of this
work was not the algorithmic improvement of the EnKF tuning. Only in some experiments, depending
on the observational setup, the adaptive inlation was not suicient to prevent a signiicant decrease in
the ensemble spread, probably due to additional error sources or missspeciications in the localization.
It was then complemented by an additional constant inlation factor βc, that was heuristically tuned
in each case separately.

The inlation could in principle be applied alternatively to the analysis ensemble of the previous
update step without any changes in the calculation of the inlation factor. However, the background
inlation was chosen in order to avoid the destruction of potential nonlinear constraints, and moreover
to mitigate the occurrences of negative convective activity values in the analysis ensemble. Yet, the
latter could appear anyway if no constraint to positive values was used. For this reason, an additional
relaxation of any negative convective activity values in the analysis ensemble to 10−5 was implemented.
They were not set exactly to 0 since this would have completely prevented any convective activity evo-
lution at the concerned gridpoint in the subsequent model propagation due to the nonlinear oscillator
relationship in Equations 2.25.

3.2.2 Quadratic Programming Ensemble

To test the inluence of certain analysis constraints on the ilter quality, the stochastic EnKF has been
extended to an ensemble of constrained optimization problems as described in Chapter 2.3.4. Although
also nonlinear constraints have been implemented, this algorithm will in the following throughout
be called Quadratic Programming Ensemble (QPEns) in analogy to Janjić et al. (2014). Since the
observation operator was linear as explained in Chapter 3.1.3, the cost function was always quadratic.
Its minimization could thus be reformulated into the following problem, where the quadratic structure
of the objective function is clearly visible and its Hessian and gradient can be directly read of:

min
z
i
k

J i
k =

1

2
zik

T
(

1+ (HkX
b
kL)

TR−1k HkX
b
kL

)

zik +
(

Hkx
b,i
k − rik − yk

)T
R−1k HkX

b
kLz

i
k

subject to cl(x
b,i
k +Xb

kLz
i
k) = 0, l ∈ E and/or cm(xb,i

k +Xb
kLz

i
k) ≤ 0, m ∈ I.

(3.7)

Here, Xb
kL signiies the square root of the localized background error covariance matrix that was gained

by Cholesky decomposition, i.e. Pb
kL = Xb

kLX
b
k
T

L (3.8), and a variable transformation xi
k → zik was

made with xi
k = x

b,i
k +Xb

kLz
i
k (3.9). As this transformation is linear, it does not change the respective

41



linear or nonlinear nature of the constraints.

In principle, any constraints could be implemented in the QPEns if the optimization problems are
solved with a nonlinear programming algorithm. However, for reasons of simplicity, only certain
general constraints were used independently of the state space in which the DA was performed. Ad-
ditional more speciic constraints, that could only be expressed in complex nonlinear functions in
physical space, were made available exclusively for the iltering in model space. Divided into these
two categories, all constraints that were set up in this work are listed in the following:

• General constraints

– constraints of the domain integrated physical model balances, i.e. moist static (ME) and
total (TE) energies (see Chapter 2.2.4), to the truth’s values; calculated from the zonal
amplitudes of the variables’ projections on the irst PCF in meridional direction, i.e. the
physical space variables, and with nonlinear contributions assumed to project on the irst
PCF:
ME =

∑

x (θ + q)
∫∞
−∞Φ0(y)dy (3.10) and

TE =
∑

x

(

u2

2 + θ2

2 + 1
2

Q

1−Q

(

θ + q

Q

)2
+ H

ΓQ
a− sθ/q

ΓQ
ln (a)

)

∫∞
−∞Φ0(y)dy (3.11)

– constraint of TE approximated as linearization around the background to the truth’s total
energy; calculated from the physical space variables as above

– constraint of the domain integrated dry mass (DM) to the truth’s value (since this was
shown in earlier studies to play a possible important role (see e.g. Janjić et al., 2014; Ruck-
stuhl and Janjić, 2018), is an important balance for many NWP models, and is conserved in
its long time average in the Skeleton model); calculated from the physical space variables:
DM =

∑

x θ
∫∞
−∞Φ0(y)dy (3.12)

– constraint of convective activity to positive values.

• Constraints available for iltering in model space

– constraints of the moist static energy, total energy, linearized total energy, and dry mass to
the truth’s value with taking into account additionally any available projections of variables
on higher order PCF as derived from Equations 2.26.

The linearizations around the background were done according to f(zik) ≈ f(xb,i
k ) + ∇f(xb,i

k )Xb
kLz

i
k

(3.13). For the more sophisticated calculations of the physical constraints, which take into account
higher order meridional distributions of the variables, all contributions of zonal summations were
weighted according to their meridional integration by computation of the integrals

∫∞
−∞Φ0(y)dy =

1.8828,
∫∞
−∞Φ2(y)dy = 1.3313,

∫∞
−∞Φ0(y)Φ0(y)dy = 1,

∫∞
−∞Φ0(y)Φ2(y)dy = 0 and

∫∞
−∞Φ2(y)Φ2(y)dy =

1. Moreover, the last nonlinear term of the total energy equation was reformulated as follows:
∫ ∞

−∞
[S · Φ0(y)] [ln(A · Φ0(y)] dy =

S ln(A)

∫ ∞

−∞
Φ0(y)dy + S

∫ ∞

−∞
Φ0(y) ln (Φ0(y)) dy =

S ln(A)

∫ ∞

−∞
Φ0(y)dy + S

∫ ∞

−∞

e−
y2

2

π
1

4

(

−y2

2
− ln(π

1

4 )

)

dy =

S ln(A)

∫ ∞

−∞
Φ0(y)dy + S

∫ ∞

−∞



− ln(π
1

4 )Φ0(y)−
−y2

2 e
− y2

2

π
1

4



 dy =

(3.14)
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S ln(A)

∫ ∞

−∞
Φ0(y)dy + S

∫ ∞

−∞
− ln(π

1

4 )Φ0(y)dy −
√

π
2

π
1

4

.

While in case of iltering in model space these extensions of the constraints are quite straightforward
and any linear constraints stay linear, they would be more complicated in case of iltering in physical
space.

The algorithm for the constrained optimizations in the QPEns could be chosen from the MATLAB
functions ’quadprog’ and ’fmincon’, that are most suitable for smooth quadratic and nonlinear pro-
gramming, respectively. They come with several solvers, of which those that are applicable for this
work can be assigned to the two general algorithmic categories of interior-point (solvers: ’interior-point-
convex’ for ’quadprog’; ’interior-point’ for ’fmincon’) or active-set (solvers: ’active-set’ for ’quadprog’;
’sqp’, ’sqp-legacy’, ’active-set’ for ’fmincon’) methods. The underlying mechanisms, as well as beneits
and drawbacks of these two classes are described in Chapter 2.3.4. In principle, all of these solvers
lead to suiciently accurate solutions for the purposes of this work, and eicient optimization is not
of great importance in the toy model setting and not in the focus of this work. Therefore, any of
them could be selected without inluencing this thesis’ results. Yet, in the following, the interior point
algorithms were used in favor of their slight advantage in speed. Furthermore, it is in this speciic
setting even beneicial if solutions at the bound of the only potential inequality constraint, i.e. the
positivity of convective activity, are inhibited by a penalty function. As stated earlier, values of
convective activity equal to zero prevent any dynamics in convective activity at the concerned grid-
point. Besides this choice of the algorithm and some parallelizations when possible, no further efort
was made regarding computational eiciency. Moreover, all experiments in this work were conducted
with only local optimization even in presence of nonlinear constraints, since the thus found minima
seemed suicient to test the relevant efects on the DA quality. However, optional global minimization
with the MATLAB function ’GlobalSearch’, that runs local minimizations from a number (default:
1000) of automatically generated starting points, was additionally implemented with ’fmincon’ as
local solver. Yet, its success depends on whether one of the starting points is located in the basin
of attraction of a global minimum, such that the returned optimum can not be guaranteed to be global.

Many of the algorithms’ details are described in Optimization Toolbox™ User’s Guide (R2019b)
and the following links are furthermore provided for their comprehension:

• general description of quadprog with a list of all settings:
https://www.mathworks.com/help/optim/ug/quadprog.html

• details of quadprog solvers’ algorithms:
https://de.mathworks.com/help/optim/ug/quadratic-programming-algorithms.html

• general description of fmincon with a list of all settings:
https://www.mathworks.com/help/optim/ug/fmincon.html

• details of fmincon solvers’ algorithms:
https://de.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html

• general description of GlobalSearch with a list of all settings:
https://www.mathworks.com/help/gads/globalsearch.html

• details of the GlobalSearch algorithm:
https://www.mathworks.com/help/gads/how-globalsearch-and-multistart-work.html.

The default settings of the algorithms were not changed except for speciications of any gradients and
Hessians of the objective function and constraints, which yields faster and more reliable results. Fur-
thermore, for any nonlinear minimizations, the background ensemble states were provided as starting
points. Most important for the solutions’ accuracy though are the tolerance on constraint violations
and the values of the stopping criteria. The latter are the lower bounds on the irst order optimality
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measure according to the KKT-conditions, on the step size, and on the change of the objective func-
tions value, as well as the maximum numbers of iterations and of function evaluations. However, those
can not simply be chosen as small as computationally afordable since smaller values do not always
result in higher accuracy, but can also prevent a solver from recognizing a minimum and force contin-
ued useless iterations. It is for this reason, that the default settings were considered to be suiciently
well chosen and not modiied.

3.2.3 Soft constraints

Additionally to the exact constraints in the QPEns, optional soft constraints, i.e. pseudo-observations,
as described in Chapter 2.3.4 were implemented for any linear constraints of the above listed. By
restricting this approach to only linear relationships, the extended observation operator was maintained
linear, which simpliied the computations. An exemplary linear constraint Dxi

k = d (3.15) that
was implemented as soft constraint with a nonzero constraint tolerance Rc, i.e. pseudo-observation
variance, introduced the following changes to the observations, observation operator and observation
error covariance matrix:

Hk,new =

[

Hk 0
0 D

]

, Rk,new =

[

Rk 0
0 Rc

]

,

and yk,new =

(

yk

d

)

.

(3.16)

In case of linearized, originally nonlinear constraints, D and d were speciic to the point around which
the linearization was made, thus mostly a diferent background state for every individual ensemble
member. In that case, the soft constraints required separate calculations of Hk,new and yk,new for the
updates of the ensemble members. Rc was by default chosen as 1 % of the concerned conservation
property’s climatological variance.
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3.3 Diagnostics

In the following, the diagnostics that were used to assess the DA systems are described. Starting
with some general veriication metrics for the accuracy of a state estimate with respect to the truth
and for the ensemble spread in 3.3.1, a more speciic evaluation of the ilter quality, that regards the
individual tropical wave types in the Skeleton model, is presented in 3.3.2. Moreover, the inluences of
DA on conservation properties and the ensemble’s PDF shape can be observed as explained in 3.3.3
and 3.3.4, respectively. Lastly, the computation of zonal wavenumber-frequency power spectra, that
can be used to visualize the MJO signal comparable to the Wheeler-Kiladis diagram (cf. Figure 2.1),
is outlined in 3.3.5.

3.3.1 General veriication metrics

For a basic assessment of any DA system with the identical twin experiments some general veriication
metrics were set up. These are not speciically tailored for this work’s purposes, e.g. to examine the
representation of non-Gaussian statistics or the MJO, but give a feeling for the overall ilter quality
in knowledge of the truth. Therefore, the standard measures of root mean square error (RMSE) and
pattern correlation/Pearson correlation coeicient (PCC), that can be found in many meteorological
publications, were adopted for the evaluation of the current best estimate, i.e. here ensemble mean.
They were complemented by a measure for the relative ensemble spread (RES), that puts the ensemble
spread in relation to the error of the best estimate. Their detailed calculations and speciications are
explained in the following, where µc and σc are the n-dimensional vectors of the climatological mean
and standard deviation, respectively. ./ signiies a pointwise division, and a diferentiation is made

between the best estimate/analysis xa
k and the ensemble mean x

a,i
k , such that these measures could also

be applied in case of a separate calculation of the best estimate in future work. Although stated here
for the whole n-dimensional state space, any of these veriication metrics could certainly be equally
calculated for only a subset, e.g. a speciic variable, of the state space:

• Root mean square error (RMSE) of the best estimate with respect to the truth; standard devia-
tion of the errors in the best estimate scaled by the climatological standard deviations; possible
values are ∈ [0,∞]:

RMSE =

√

1

n

[(

xa
k − xt

k

)

./σc

]T [(

xa
k − xt

k

)

./σc

]

. (3.17)

• Pearson correlation coeicient (PCC), often also referred to as pattern correlation, between the
best estimate and the truth; measure for the correlation between the spatial patterns in the best
estimate and the truth; possible values are ∈ [−1, 1]:

PCC =

(

xt
k − µc

)T
(xa

k − µc)
√

(

xt
k − µc

)T (

xt
k − µc

)

√

(

xa
k − µc

)T (

xa
k − µc

)

. (3.18)

• Relative ensemble spread (RES); ratio between the mean absolute deviation of the ensemble
members from their mean and the mean absolute deviation of the best estimate from the truth;
all contributions scaled by the respective climatological standard deviations; possible values are
∈ [0,∞], but should be around 1 throughout the whole iltering process if the ensemble statistics
are a good representation of the insecurity in the analysis:

RES =

∑

n

[

∣

∣

∣x
a,i
k − x

a,i
k

∣

∣

∣./σc

]

∑

n

[∣

∣xa
k − xt

k

∣

∣ ./σc

] . (3.19)
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3.3.2 Wave indices

For the assessment of the DA algorithms’ ability to ilter the distinct wave types that are present
in the Skeleton model, i.e. dry Kelvin, MJO, moist Rossby and dry Rossby waves, indices analogue
to the MJO index, which is described in Chapter 2.2.5, were set up for all four of them. They all
use the same inner product M. Since most power in the Skeleton model is expressed in the zonal
wavenumbers k ∈ {1, 2, 3} 1

40000 km
, as visible in the nature run’s power spectrum (cf. Figure 2.5),

only their corresponding eigenvectors were taken into account for the projections. Moreover, for the
MJO index, an optional preceding iltering of the model output for the typical MJO frequency band
of 1

90 days
≤ ωMJO ≤ 1

30 days
(3.20) was implemented to make the extraction of MJO structures more

robust. However, this is only mentioned as theoretical option, but turned out to be not necessary
for a suicient separation of the MJO from the other waves and was thus not applied in the further
experiments. The patterns in the time evolution of the wave indices were investigated in a nature
run and found to show clearly distinct properties that can be associated with the propagation of the
diferent wave types (see Chapter 4.1.5).

The calculated signals represent the spatial, thus in this truncated model version zonal, distribu-
tion of the waves’ strengths. Therefore, the pattern correlation and RMSE of the best estimate’s
indices compared to the truth’s corresponding indices were calculated as a straightforward measure
for the iltering skill with respect to the waves. This was done analogous to Equations 3.17 and 3.18,
where the indices replace the respective state vectors and σc and µc are the climatological mean and
standard deviations of the indices.

3.3.3 Conservation properties

To see how balances in the Skeleton model are afected by the iltering, and furthermore to verify the
implemented analysis constraints, some properties of the best estimate and the ensemble members
could be calculated at all time steps throughout the experiments. These include, analogue to the
implemented constraints as described in Chapter 3.2.2, the physical conservation properties and dry
mass calculated from the variables projections on the irst meridional PCF as well as from all available
meridional components. Furthermore, the following three conservation properties that are exactly
held in the model’s truncated algorithm were assessed:

• C1 =
∑

x−4K
3 +R (3.21)

• C2 =
∑

x

√
2K + 1

Q−1

(

Q−Q( K√
2
+ R

2
√
2
)
)

(3.22)

• C3 =
∑

x
K2

2 + 3
√
2R2

32 + Q

2(1−Q)
(Q
Q
− K√

2
− R

2
√
2
)2 + HA

γΓQ
− S

γΓQ
ln(A) (3.23).

3.3.4 PDF shape diagnostics

In order to measure the non-Gaussianity present in the model’s climatology or in the ilter’s ensem-
ble, the computations of skewness, excess kurtosis and KL-divergence from a sample as explained in
Chapter 2.3.5 were used. They were only applied univariately to single state space positions. This
approach kept the calculations simple and was considered suicient due to the strong non-Gaussianity
that is already present in convective activity, the variable with the strongest non-Gaussianity, at single
gridpoints.

To determine the KL-divergence of a sample, its PDF shape had to be approximated. This was done
by distributing all sample elements in bins and subsequent scaling of all values in the bins such that
their integration equals 1, i.e. the construction of a probability density scaled histogram. Thereby,
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a stepwise PDF p was gained, that could thereafter optionally be smoothed by the calculation of
moving averages. Critical for the shape of p and thus the accuracy of the KL-divergence measure
are therefore mostly the freely selectable number of bins and the smoothing width. An alternative to
this procedure would have been to use kernel smoothing for the estimation of the PDF, but this was
found to be much more prone to errors due to unsuitable choices of the kernel, especially for highly
skewed distributions. For the inal calculation of the KL-divergence, the values of the corresponding
Gaussian PDF q with the same mean and standard deviation were computed at the centers of the
bins. The integration was subsequently carried out numerically. If p contained any 0 values, e.g. if
any bins were empty by chance and no smoothing was applied, the contributions of these bins to the

KL-divergence were directly set to 0, since the MATLAB computation of p(x) ln
[

p(x)
q(x)

]

= 0 · (−∞)

(3.24) would otherwise result in NaN as output for the whole integral, although p ln p
q → 0 for p → 0.

3.3.5 Power spectra

Besides the above diagnostics that all look at certain properties of the best estimate or ensemble at
a certain time, the zonal wavenumber-frequency power spectra of the best estimate and the truth
could be calculated during iltering and forecast. Therefore, a two-dimensional Fourier transform in
zonal space and time was applied to the model data. Although the power spectra do not yield any
information about the accuracy of the ilter’s result at a given time, they could however provide insight
into the potential emergence of new artiicial wave types or the attenuation of model inherent wave
types due to DA. Nevertheless, in this work, they were only used for the visualization of the model
properties (cf. Figure 2.5).
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4 Results

4.1 Relevant climatological properties of the Skeleton model

In this chapter, the climatological properties of the Skeleton model in the version and standard settings
used in this work are described and visualized. The focus is thereby put on characteristics that are
relevant for DA and its assessment. Typical atmospheric states are shown in 4.1.1 and analyzed with
respect to their orthogonality in the state space. Subsequently, the model’s climatology is investigated
regarding the variables’ covariances in physical and model space in 4.1.2, the accuracy of the physical
and algorithmic balances in 4.1.3, and the amount of non-Gaussianity in the variables in 4.1.4. Finally,
in 4.1.5, the expression of the four wave types in the Skeleton model is visualized by the application
of the wave indices to a nature run.

4.1.1 Typical atmospheric states

Figure 4.1: 20 initial ensemble members in physical (left) and model (right) space, i.e. yearly clima-
tological states collected from 20 years of model simulation.
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A look at a 20-member initial ensemble (cf. Figure 4.1), that was retrieved in physical as well as model
space from climatology, shows the typical dimensions and patterns of the non-dimensional variables
in the Skeleton model. It should be noted that the variables q or Q, a or A and consequently a′ or
A′ are identical in both state spaces. Moreover, all variables are approximately of the same order of
magnitude and about orthogonal (cf. Figure 4.2). The states covariance matrix has the maximum
possible rank of 19 in both spaces.

Figure 4.2: Orthogonality measures of the above 20 initial ensemble members in physical (left) and
model (right) space, calculated by the scalar products scaled by the square roots of the corresponding
vector lengths: oi,j =

xi◦xj√
|xi||xi|

.

4.1.2 Covariances

Figure 4.3: Correlation matrices (i.e. covariances scaled by the products of the corresponding variables’
standard deviations) of a 1000-member climatological ensemble in physical (left) and model (right)
space.

The typical covariances in the Skeleton model were derived from a large, 1000-member climatological
ensemble (cf. Figure 4.3). Most noticeable is that the convective activity is only weakly coupled to the
other variables within a narrow spatial correlation length, and moreover any intravariable covariances
between convective activity values at diferent gridpoints have negligible magnitudes. The latter is
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approximately true also for the moisture variable q or Q, which is however more strongly linked to the
dry dynamics. All covariances show a strong distance dependence, whose length scale difers depending
on the concerned variables and gridpoints. It is largest for the intravariable correlations of potential
temperature or the structure of the dry Kelvin wave in the physical or model space, respectively.
Furthermore, there are several of-diagonal covariance peaks which indicate a dominance of structures
with zonal wavenumber 2.

4.1.3 Balances

Figure 4.4: a) values of physical balances in a 1000-member climatological ensemble (blue: calculated
from physical space variables, i.e. projections only on the irst PCF, red: calculated taking into account
any available contributions from projections on higher order PCFs), b) corresponding histograms scaled
to represent relative frequencies, c) values of algorithmic conservation properties in the same ensemble.

The 1000-member climatological ensemble was furthermore used to investigate how accurate the phys-
ical balances and algorithmic conservation properties, that are described in Chapters 3.2.2 and 3.3.3,
are fulilled in the model (cf. Figure 4.4). In general, all quantities were found to be approximately
conserved over time with diferent amounts of oscillation around the true value. As expected, the
latter is largest for the dry mass, which is not actually conservative in the underlying equations, but
only conserved in its long time average. Smaller oscillations that are only due to truncation and
numerical errors are present in the physical model balances, i.e. moist static energy and total energy.
It is especially noticeable that those are better held if calculated only from the variables’ projections
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on the irst PCF, thus neglecting any higher order contributions. For this reason, only those were
used as constraints and diagnostics throughout all presented experiments, and any further mentions
of ME, TE, or DM refer to them. Finally, subject to exclusively numerical errors are the algorithmic
conservation properties, which are thus very well conserved with only slight deviations, i.e. minimal
drifts in C1 and C2 and somewhat larger, but still small oscillations in C3. The properties C1, C2,
ME and the long time average of DM have a theoretical value of 0 due to their linearity in combina-
tion with all involved variables being deviations from a background mean state. In contrast, C3 and
TE are nonzero due to nonlinear terms and the involvement of absolute convective activity.

4.1.4 Non-Gaussianity

Figure 4.5: Skewness, excess kurtosis and KL-divergence in a 1000-member climatological ensemble
in physical (left) and model (right) space, horizontal blue line and grey shading: mean and standard
deviation in the dry dynamic variables and moisture, KL-divergence calculated with 50 histogram bins
and a moving average smoothing over 10 bins.

Figure 4.6: Probability density scaled histograms of convective activity at the gridpoints with highest
KL-divergence (blue) and smallest background forcing (red), superimposed PDF its and Gaussian
functions with same means and standard deviations as used for the KL-divergence calculation.

The non-Gaussianity in the model was examined by the calculation of the univariate diagnostics
skewness, excess kurtosis, and KL-divergence as described in Chapter 3.3.4 from the 1000-member
climatological ensemble (cf. Figure 4.5). While the dry dynamic variables and moisture are approx-
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imately Gaussian distributed with on average only slightly positive skewness and negative kurtosis,
there is signiicant non-Gaussianity in the convective activity. This is especially pronounced in re-
gions of small background forcing, i.e. outside of the warmpool. However, it is important to note
that the enhanced skewness of convective activity in this area is not simply due to an accumulation
of values very close to 0 as one could expect at positions with small mean convective activity from
the variable’s strict positivity constraint. In fact, with the model version and settings used here, even
at the gridpoints with the highest skewness or with the smallest background forcing, the convective
activity distribution is positioned with a clear gap above 0 (cf. Figure 4.6). Moreover, the result that
the PDF shapes of the other variables appear rather unafected by the amount of non-Gaussianity in
the convective activity distribution can be explained by the weak coupling via covariances between
those two variable groups as seen in Chapter 4.1.2.

4.1.5 Wave types expression

Figure 4.7: Hovmöller diagrams of the four wave indices during a 1 year nature run after the model’s
spin-up.

A nature run of one year after suicient model spin-up was analyzed for the behavior of the four
diferent wave types in the Skeleton model by calculation of the wave indices as explained in Chapter
3.3.2. Their Hovmöller diagrams (cf. Figure 4.7) show the expected typical propagation directions
and phase speeds. Moreover, some variability in their strength over time can be observed with a
clear correlation between the moist modes, i.e. the moist Rossby waves and the MJO. It should be
noted that these results were achieved without any previous iltering for certain frequencies. This is in
accordance with the good performance of the Skeleton model based MJO index for real time iltering
as stated in Stechmann and Majda (2015).
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4.2 Stochastic Ensemble Kalman Filter results

In the following, the results for the iltering with the stochastic EnKF are presented in two separate
parts. Firstly, the derivation of the optimal localization from all available methods in physical as
well as in model space, and for diferent ensemble sizes is presented in 4.2.1. Secondly, the diferent
inluences of observations of the diferent variables in the EnKF are systematically assessed in 4.2.2.
Therefore, their impacts on the general ilter quality and the predictability of the four wave types, as
well on the conservation properties and the ensemble statistics are regarded.

4.2.1 Localization tuning

Figure 4.8: Climatology based localization matrices calculated from a 1000-member climatological
ensemble in physical (left) and model (right) space.

The best localization for the stochastic EnKF was investigated experimentally from all available op-
tions that are described in Chapter 3.2.1. Therefore, irst, the climatology based localization matrices
in physical and model space were calculated from the covariances in the 1000-member climatological
ensemble (cf. Figure 4.8). Subsequently, the diferent localization techniques, i.e. climatology based
and/or distance dependent according to a Gaussian or Gaspari-Cohn (GC) function with variable lo-
calization radius r, were assessed. Since the localization should primarily mitigate sampling errors in
the covariance estimation, this was done for a range of ensemble sizes N by repetition of the following
steps for each localization option, again using the climatological 1000-member ensemble:

• selection of 100 permutations with N members from the 1000 climatological states
• calculation of the correlation matrices (scaled covariance matrices as in Figure 4.3) for each of

the permutations
• localization of the correlation matrices
• computation of the relative covariance pattern errors by pointwise division of the diferences

between the permutations’ correlation matrices from the 1000-member correlation matrix by the
1000-member correlation matrix

• averaging the absolute values of the relative covariance pattern errors over all permutations
• taking the mean of the thus gained error matrix as inal error measure.
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Figure 4.9: Least achievable (i.e. for the best localization radius) covariance pattern error for a range
of ensemble sizes in physical (left) and model (right) space, four lines for the available localization
techniques: distance dependent localization by a Gaussian or Gaspari-Cohn function with optional
additional climatology based localization.

Figure 4.10: Localization radii with the smallest covariance pattern errors as function of the en-
semble size, for distance dependent localization by a Gaspari-Cohn function plus climatology based
localization, two lines for physical and model space.

The outcome of this procedure were scalar measures for the remaining covariance pattern errors after
localization with the diferent techniques and for diferent ensemble sizes. To evaluate whether the
climatology based localization should be applied, and whether it makes a diference if a Gaussian or a
GC function is used for the distance dependent damping, the smallest achieved error values for these
options, i.e. those for the optimal localization radii, were plotted as functions of the ensemble size (cf.
Figure 4.9). The results indicate that independent of the ensemble size and both, in physical as well
as in model space, the climatology based localization is useful and there is no signiicant diference
between the localization by a Gaussian or GC function. It was therefore decided to use the combined
climatology based and GC localization for the further experiments in this work. With this technique,
the quality of the covariance estimation can be kept approximately constant also for small ensembles
by adaption of the localization radius, and is moreover similar for the iltering in both state spaces. In

54



a second step, the thus selected localization was examined for the optimal localization radius, i.e. the
one with smallest error value, subject to the ensemble size (cf. Figure 4.10). The graph reveals a quite
diferent behavior depending on the state space: In physical space, the localization radius is strongly
increasing with the ensemble size and there is no need for a GC localization for N > 100. In contrast,
in model space, a tight localization with only weakly increasing localization radius with ensemble size
should be applied. These indings are in good agreement with the experienced diferences in ilter
quality of the EnKF with diverse localization radii and ensemble sizes. The localization radius in
all following experiments was selected based on these results, where the standard ensemble size was
chosen to be 50 members.

4.2.2 Assessment of diferent observational setups

The observations of diferent variables can vary largely in their impacts on the EnKF’s quality due
to their diferent interdependencies with other variables and gridpoints. To assess which observations
are particularly helpful for the iltering of the Skeleton model and especially the MJO prediction, six
experiments were run with the standard setup as described in Chapters 3.1.1, 3.1.2, 3.1.3 and 3.2.1.
In each of those, only one variable, either u, θ, q, a, K or R, was observed at every fourth gridpoint
and time step, i.e. with distances in space and time of approx. 2500 km and 6.64 h. In the irst
four experiments, the update step was performed in physical space, in the latter two in model space.
An ensemble size of 50 members was chosen and the localization radius was selected according to the
suggestion in Chapter 4.2.1 as 0.24 or 0.15. Additional constant inlation factors βc were tuned for
each experiment separately as 1.0004, 1.0010, 1.0005, 1 i.e. none, 1.0001 and 1.0001, respectively.
The DA was run for 5 years in the model simulation, followed by 5 years of free forecast, where the
underlying truth is the same in all experiments.

The results of the experiments are presented in Figure 4.11 for the RMSE and pattern correlation
evolutions of the diferent physical and model variables and in Figure 4.12 of the wave types in the
ensemble mean. For a better overview, the main interesting outcomes are listed in the following:

• If only potential temperature is observed, the ilter quality is speciically bad for all other physical
variables and the MJO. This is in good correspondence with the inding that the MJO signal is
least expressed in the power spectrum of potential temperature (cf. Figure 2.5).

• DA with observations of zonal wind or moisture shows the best overall results and is beneicial
throughout all variables and wave modes, also the MJO.

• Observations of convective activity are beneicial for the iltering of moisture, but not suicient
to prevent the EnKF’s divergence in the dry dynamic variables. This can be explained by the
small covariances between convective activity and the other variables. However, it is possible to
ilter all wave types, also the MJO, with only convective activity observations, which nonetheless
stresses their importance.

• The iltering skill that is achieved for the moisture and convective activity is often worse than
for the dry dynamic variables. This can be explained by their smaller scale structure, and for
convective activity also by its non-Gaussianity.

• The dry waves can in general be better iltered than the moist waves. However, they are in most
cases not predictable over long time, presumably due to their fast propagation.

• Observations of K are not beneicial for iltering the physical variables and lead to a small
predictability of the moist wave types. It is more useful to observe R. A probable reason for
this is the very fast oscillation of the Kelvin wave.

• Observations of K are correlated with a good iltering skill for dry Kelvin waves and observations
of R with a good iltering skill for especially dry, but also moist Rossby waves. This shows the
importance of their corresponding unforced structures for these wave types.
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Figure 4.12: Six experiments with observations of diferent variables as indicated in the separate rows,
DA at every fourth gridpoint and time step, 5 years of iltering, subsequently 5 years of free forecast,
the columns show for the diferent wave types in the Skeleton model the RMSEs (red) and pattern
correlations (blue).

In addition to the above presented error evolutions, Figures 4.13 and 4.14 furthermore show the DA’s
inluences on the ensemble statistics, here especially the skewness and the ensemble spread, and the
model’s physical and algorithmic conservation properties as well as the dry mass in the ensemble mean.
With respect to this, in particular the following can be remarked:

• The skewness of convective activity was reduced, but stayed slightly positive on average through-
out the DA in all experiments. It could be best maintained during iltering with the log-normally
distributed observations of convective activity.

• The relative ensemble spread could be maintained within in the interval [0.5,1.5] throughout
all experiments. This is above the ensemble spread that is approached without inlation. The
adaptive inlation factor decreased over time in all experiments as is theoretically expected.

• Stronger inlation was needed in the experiments with observed dry dynamic variables, i.e. u, θ,
K, and R.

• All conservation properties are afected by the DA in all experiments. However, some diferences
can be observed. Especially zonal wind observations, but also observations of R are beneicial
for C1. Potential temperature observations lead to an oscillation around the correct mean for
ME and C2, though with large amplitude. DM , the only neither physical nor algorithmic
conservation property, is least afected by DA, its oscillation stays within the climatological

57



range.
• All linear conservation properties are approximately conserved during the free forecast. However,

their value depends on the initial condition, i.e. the analysis produced by the last DA update.
Even in case of a oscillation around the correct mean during DA, this can lead to a quite erroneous
value during the forecast.

• TE and C3 of the ensemble mean both show a negative drift during the free forecast. This
is due to the relaxation to a climatological distribution of the states. As these are nonlinear,
convex functions, the climatological mean, for which u, θ, and q or K, R, and Q are close to
zero throughout all gridpoints, has smaller TE or C3 than the mean value of climatologically
distributed states.

Figure 4.13: Six experiments with sparse observations of diferent variables as indicated in the separate
rows, DA at every fourth gridpoint and time step, 5 years of iltering, subsequently 5 years of free
forecast, the columns show the inluences on the ensemble properties, i.e. the skewness in convective
activity at the gridpoint with the highest climatological skewness (left, green line: climatological
skewness) and the relative ensemble spread (middle, green line: optimal relative ensemble spread, i.e.
1), the evolution of the inlation factor during the iltering is plotted on the right.
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Finally, it should be mentioned that experiments with observations of Q and A, i.e. observations of the
moisture variables with DA in model space, were attempted, but lead to a very fast ilter divergence.
They were thus not included. The reason for this could be that the dry dynamic structures K and
R in model space are propagating faster and are thus more diicult to ilter than u and θ in physical
space. This problem of an especially diicult iltering of K in the Skeleton model has been detected
earlier – although with a diferent ilter setup – also by Chen and Majda (2016).
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4.3 Impacts of analysis constraints

This section presents the results for the QPEns with the diferent implemented analysis constraints. In
4.3.1, experiments with observations of zonal wind and convective activity, i.e. typical variables for the
assessment of the MJO, are conducted with the QPEns. The iltering skill for the physical and model
variables, and the wave modes is analysed and compared to the stochastic EnKF. Furthermore, the
results of the linearized soft total energy constraint are compared to those with the exact constraint.
Thereafter, the inluence of the total energy constraint is investigated in more detail as it showed
a positive impact throughout all results in 4.3.1. It is evaluated how it improves the treatment of
non-Gaussianity over a simple cut or constraint of convective activity to positive values. Therefore,
experiments are run in a test case with small mean convective activity, i.e. with frequently occurring
values close to zero, in 4.3.2.

4.3.1 General inluences on the ilter quality and MJO prediction

Figure 4.15: a) RMSEs and b) pattern correlations for the wave types and the variables in physi-
cal and model space, DA with observations of u and a at every fourth gridpoint and time step, 1 year
of iltering, subsequently 1 year of free forecast, same perturbed observations used for all experiments,
results smoothed by the MATLAB function ’lowess’ for locally weighted linear regression with a span
of 60 days, black: stochastic EnKF, blue: QPEns with moist static energy constraint, red: QPEns
with total energy constraint, yellow: QPEns with dry mass constraint, the black and blue line are
very close to each other and diicult to distinguish.

The experiments for the assessment of the diferent analysis constraints in the QPEns, which are
described in Chapter 3.2.2, were performed with sparse observations of u and a, both at every fourth
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gridpoint and time step. This setup was chosen in analogy to Chen and Majda (2016), who tested a
nonlinear ilter for the Skeleton model. They argued that full observations of convective activity and
optional sparse observations of zonal wind best relect the data from satellites and weather stations
that is operationally used to track the MJO. However, in the following, convective activity is also
sparsely observed in order to maintain more uncertainty and a wider ensemble spread in it. This was
not necessary in their work as they used another model version which stochastically propagates the
convective activity. For the same reason, the DA was in the following experiments only run for one
year with a subsequent forecast time of equally one year. Furthermore, the ensemble was again chosen
to consist of 50 members and the additional constant inlation factor βc was tuned to 1.0001. The
set of perturbed observations was only generated once during the irst experiment and then reused
in the following ones, which was possible as the underlying truth was always the same. With these
conditions, perfect comparability was ensured.

Figure 4.15 shows the results of the experiments with analysis constraints of the diferent physical
balances, i.e. the constraints of moist static energy (ME), total energy (TE) or dry mass (DM)
to the respective value of the truth. They were compared to the unconstrained stochastic EnKF by
the RMSEs and pattern correlations of the four wave types, and the physical and model variables in
the ensemble mean. For a better visibility of diferences, all curves were smoothed by the MATLAB
function ’lowess’ for locally weighted linear regression with a span of 60 days. The moist static energy
constraint was found to improve the iltering skill only very slightly, such that the lines for the EnKF
and the QPEns with moist static energy constraint are hardly distinguishable in the graphs. In con-
trast, the dry mass constraint lead to signiicant deviations of the estimated states from the EnKF,
but did not show a clearly advantageous behavior. A signiicant positive impact throughout all results
was however observed for the total energy constraint.

Figure 4.16: Total energy in the truth (left), the members of the QPEns with total energy constraint
(middle), and the ensemble members with pseudo-observations/soft constraint of the linearized total
energy (right), 1 year of iltering, subsequently 1 year of free forecast.

Since the total energy is a nonlinear function of the state variables, the QPEns with total energy
constraint requires nonlinear optimizations. This leads to a considerable increase in computational
demand, which is not of relevance in this work’s toy model setting but would be an important obstacle
for its operational realization. Therefore, the computationally inexpensive alternative of a soft con-
straint, i.e. pseudo-observations, was furthermore investigated in comparison to the exact constraint.
This was set up as explained in Chapter 3.2.3 with the total energy calculated from its linearization
around the respective background ensemble states. It was found that the accuracy of the total energy
in the ensemble members that could be achieved with the soft constraint was comparable to that of
the MATLAB minimization with default tolerances and stopping criteria (cf. Figure 4.16). The result
for the iltering skill of the MJO was thus also indistinguishable from that of the QPEns (cf. Figure
4.17).
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Figure 4.17 shows the same lines for the stochastic EnKF and the QPEns with total energy constraint
as the subplot concerning the MJO’s RMSE in Figure 4.15, but enlarged and without smoothing. The
result of the improvement in MJO predictability through the analysis ensemble members’ constraint
to the truth’s total energy is thus more clearly visible. It is especially noticeable, that the diference
in the ilters’ skills develops mostly during the free forecast, whereas the RMSE after the one year of
DA is approximately comparable.

Figure 4.17: RMSE of the MJO during experiments as in Figure 4.15 with the stochastic EnKF, the
QPEns with total energy constraint and the stochastic EnKF with additional pseudo-observations/soft
constraint of the linearized total energy.

4.3.2 Test case with small mean convective activity

The reason for the beneicial impact of the total energy constraint on the DA was evaluated via three
experiments with an increased warmpool strength of α = 0.9 (see Equation 2.35). This leads to a
smaller background forcing and thus smaller mean convective activity values outside of the warmpool,
i.e. overall more frequent values of convective activity close to zero. Negative values in the EnKF’s
analysis for convective activity are thus more likely. Those are truncated to values slightly above zero
as explained in Chapter 3.2.1 to prevent errors in the subsequent propagation. With this setup, three
years of iltering were run with diferent DA systems. First, the stochastic EnKF was applied with
the above described cut of negative convective activity values. Second, the QPEns was used with the
boundary constraint of convective activity to positive values. Third, the QPEns was used with the
total energy constraint, which automatically constrains convective activity to positive values as its
equation contains its natural logarithm.

The results of these experiments are shown in Figure 4.18. Both, the cut and the constraint of
convective activity to positive values, can not prevent the ilter from diverging. More ensemble mem-
bers reach convective activity values very close to zero at more gridpoints over time and the ensemble
spread increases unrealistically due to the thus wrongly estimated PDF. In contrast, the total energy
constraint successfully maintains a plausible PDF for convective activity throughout all gridpoints
and achieves a good iltering skill.

An improved treatment of the non-Gaussianity in the Skeleton model is thus the reason for the bene-
icial impact of the total energy constraint in DA. Convective activity shows only small climatological
covariances with the other variables and between gridpoints. However, a strong nonlinear relation
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between all variables, that moreover incorporates the positivity of convective activity, is given by the
total energy. If use of this is made in DA, it can signiicantly improve the forecast quality.

Figure 4.18: Comparison of three experiments with the settings described in Chapter 4.3.1 except
for a smaller background warmpool with α = 0.9 and three years of only iltering, results for the
stochastic EnKF (left), the QPEns with a constraint of convective activity to positive values (middle)
and the QPEns with total energy constraint (right), the diferent rows show 1. the time evolution
of the RMSE in convective activity, 2. the time evolution of the ensemble’s skewness in convective
activity at the gridpoint with the highest climatological skewness, 3. the spatial convective activity
distribution of the ensemble members (orange), the ensemble mean (red) and the truth (green) after
1 year and 4. the same after 3 years.
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5 Discussion

The above presented results allow for several conclusions with respect to possible improvements in
DA for MJO prediction. They are all based on identical twin experiments with the Skeleton model as
described in Chapter 3.

Firstly, a stochastic EnKF was set up and tuned by covariance localization and adaptive multiplica-
tive inlation. Thereby, it could in particular be demonstrated that the consideration of climatological
covariances beyond pure isotropy in the construction of the localization matrix is beneicial when
iltering the Skeleton model. This emphasizes the nature of the MJO as planetary scale phenomenon
that comes with speciic large scale interdependencies in the atmosphere. Those are important to
respect in the initial conditions for MJO forecasts.

Thereafter, experiments with diferent observational setups showed signiicant variations in the be-
havior of the stochastic EnKF. They indicate that especially a good representation of the lower tropo-
spheric moisture, but also the zonal wind variable lead to an improved iltering skill and predictability
of all variables and all wave types. This is in accordance with earlier studies by Stechmann and Majda
(2015) and Chen and Majda (2016), who both stated the important role of humidity for the MJO
signal in the Skeleton model. Chen and Majda (2016) moreover showed a positive impact of zonal
wind observations on the overall iltering skill of a nonlinear ilter applied to the Skeleton model. In
contrast, potential temperature was found to be the least important variable for the prediction of the
MJO. Its observations proved to be only useful for the iltering of the dry dynamics, thus the fast wave
types, which are however subject to comparably rapid error growth in the forecast. This subordinate
role of temperature or mass (as θ is interchangeable with ρ, i.e. density anomalies, in this model)
information for the MJO evolution is consistent with the weak MJO signature in the power spectrum
of potential temperature during a nature model run. Furthermore, the relevance of convective activity
for DA with the EnKF was assessed. As it is only weakly coupled to the dry dynamic variables via
covariances, its observation was insuicient for their iltering with the EnKF. However, it proved to
be beneicial for the iltering of moisture and of all wave types, even those with only small coupling
to convective activity. This emphasizes its nevertheless important role in the Skeleton model. In
addition to these experiments with observations of the physical variables, the signiicance of infor-
mation on the dry Kelvin and irst meridional Rossby wave structures was evaluated. It was shown
that both are important for the evolution of the MJO. Yet, capturing the slower propagating Rossby
wave structure had a stronger positive impact, and was moreover also useful to ilter the physical dry
dynamic variables.

Besides the determination of beneicial localization and observations for the EnKF, this work was
aimed at the improvement of DA for MJO prediction beyond the EnKF. The motivation for this
was given by the fact that the neglected non-Gaussianity in the probability distribution of convec-
tive activity was suspected to be a major error source. This was emphasized by the observation of
a signiicant reduction of skewness in the ensemble’s convective activity distribution throughout DA
with the EnKF. Moreover, it is for the same reason that a nonlinear ilter for the Skeleton model
was set up successfully in earlier work by Chen and Majda (2016). In this thesis, however, a diferent
approach was chosen. Additional constraints of the analysis ensemble members to the truth’s values of
certain physical balances were imposed on the otherwise unchanged cost function minimizations in the
stochastic EnKF. This returns the QPEns as algorithm, which consists of an ensemble of numerical
optimization problems in the update step. First proposed by Janjić et al. (2014), such constraints
have previously been shown to have the potential to help maintaining physically plausible states and
thus more realistic probability distributions throughout DA (see Janjić et al., 2014; Zeng et al., 2017;
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Ruckstuhl and Janjić, 2018). As the Skeleton model furthermore incorporates two energy conservation
principles that were found to be violated by DA with the EnKF, there was a strong indication for a
potential beneit through analysis constraints.

The analysis constraints that were primarily evaluated in this work with a QPEns are the Skeleton
model’s balances of moist static and total energy, as well as a constraint of the dry mass. Although the
latter is not exactly conserved in the model, it is conserved in its long time average, it is an important
physical balance for many NWP models, and it has moreover shown an advantageous inluence in
earlier work (see Janjić et al., 2014; Ruckstuhl and Janjić, 2018), though in combination with another
model. With a set of experiments, it was demonstrated that the constraint of moist static energy has
a very small positive impact, whereas the constraint of dry mass inluences the ilter signiicantly, but
neither clearly positive nor negative. This is in conformity with the inding that potential temper-
ature largely inluences both of these properties, but is the least important variable for the EnKF.
Furthermore, the dry mass is not much afected in the EnKF but stays within its climatological order
of magnitude. In contrast, the constraint of total energy was found to lead to an improvement in
the iltering skill with respect to the EnKF for all variables and wave types. Interestingly, the error
diference developed mostly during the free forecast, which strengthens the importance of correct total
energy in the initial conditions for MJO prediction. The reason for this was demonstrated in subse-
quent experiments with a small convective activity background in some regions of the zonal domain.
In this test case, negative convective activity values occurred frequently in the analysis of the EnKF. A
truncation of such values to slightly positive values or a positivity boundary constraint in the QPEns
both lead to an increasingly skewed probability distribution of convective activity as more ensemble
members at more gridpoints approached small values. Whereas those methods were thus not capable
to prevent ilter divergence, the total energy constraint successfully solved this problem. This shows
how the total energy relation, which involves all variables and an automatic positivity constraint for
convective activity, improves the treatment of non-Gaussianity. It complements the small covari-
ances between convective activity and the other variables by an additional nonlinear relationship, and
thereby yields physically more realistic states in the analysis ensemble, especially in the non-Gaussian
variable of convective activity.

To summarize, the results of this thesis emphasize the importance to respect planetary scale cor-
relations and to capture the zonal wind and humidity distribution in DA for MJO prediction. Fur-
thermore, they indicate a largely beneicial impact of correct total energy in the initial conditions,
whose constraint can compensate for the neglect of non-Gaussian convective activity statistics in the
EnKF.

However, the meaningfulness and applicability of these indings should be subject to critical dis-
cussion. Primarily, it should be noted that the setup used for the experiments in this work is very
simpliied with respect to operational NWP systems. Not only is the Skeleton model a toy model which
incorporates various assumptions, approximations, and a strong truncation, but also the DA systems
were implemented with idealized processing of the observations and tuning, and with perfect model
propagations. Therefore, neither the evolution of the MJO nor the DA algorithms accurately repro-
duce real world conditions or operations. Nevertheless, the Skeleton model depicts some fundamental
characteristics of the MJO in such quality that incorporating its dynamics into more detailed models
was already suggested (see Stachnik et al., 2015). In the same manner, the results of this thesis could
be used as hints for possible improvements in DA that are to be veriied in more sophisticated setups.
First steps in that direction could be done with the use of more realistic observations, comparable
to those synthesized for the Skeleton model from real data by Ogrosky and Stechmann (2015). This
would require a reinement of the DA system, e.g. for the inclusion of some model error. Alternatively
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or in addition, the large variety of more elaborated versions of the Skeleton model, which all include
diferent additional realistic features, could be used for further experiments. By this, the robustness
of the results could be tested. Available model modiications or versions are in particular:

• A diferent initialization (see Majda and Stechmann, 2011) or more realistic background forcing
(see Ogrosky and Stechmann, 2015) for the fully truncated nonlinear deterministic version as
used in this work.

• The stochastic nonlinear Skeleton model (see Thual et al., 2014): The idea behind this model
version is to parameterize synoptic scale processes, that are responsible for the irregularity and
low predictability of MJO events, with more realism while keeping the model’s simple design.
Therefore, the nonlinear interaction that governs the evolution of convective activity is replaced
by a Markov birth-death process, whose transition rates are chosen such that the deterministic
dynamics are conserved on average: ∂E(a)

∂t = ΓE(qa) (5.1). It was shown that simulations with
this model version arrive at capturing some main statistical characteristics of MJO irregularity,
especially their occurrence in wavetrains of consecutive MJO events (Stachnik et al., 2015).

• The nonlinear deterministic model with reined meridional structure, i.e. choosing a higher
truncation number M > 0 (see Thual et al., 2015): This is especially useful when it comes
to investigating seasonal efects. Experiments with a seasonally varying warmpool background
showed a realistic seasonal modulation of intraseasonal variability with meridionally asymmetric
intraseasonal events.

• Several versions with diferent reined vertical structures (see Thual and Majda, 2016a,b): These
model versions difer from each other in their details, but they all show improvements in the
representation of the reined vertical MJO structure.

The meridionally and vertically extended versions all incorporate a total energy balance. However, the
total energy conservation is violated if sθ ̸= sq and is also afected by the stochasticity in the stochastic
Skeleton model. This should be respected when further investigating the total energy constraint.

Besides the issue of the result’s veriication, their applicability in operational forecasting routines
needs to be discussed. In particular, the implementation of the QPEns with a nonlinear analysis con-
straint, such as the total energy, is subject to two major diiculties (see also Zeng et al., 2017). First,
in contrast to the identical twin experiments in this thesis, the truth’s exact value is not known under
real world conditions. It thus has to be estimated in an additional process. And second, the nonlinear
optimizations increase the computational demand for the DA’s update step signiicantly with respect
to an EnKF in a large state space. The latter problem is already addressed by current research on
algorithmic improvements in numerical minimizations, such as parallelizations or exploiting matrix
sparsities (Zeng et al., 2017). Nevertheless, as an alternative to the costly QPEns, soft constraints via
pseudo-observations were tested in this thesis. Therefore, the total energy constraint was linearized
around the respective current background states. Despite this linearization and a necessary nonzero
constraint tolerance, this method proved suiciently accurate in this work’s toy model setup. It could
thus be a considerable option, at least for irst tests of analysis constraints, also in operational NWP.
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6 Summary and outlook

This thesis was aimed at the identiication of possible improvements in DA for MJO prediction. For
this purpose, a toy model setup was used since experiments with modern, high level GCMs on in-
traseasonal timescales would have exceeded a practicable computational demand. The selected model
was the ’Skeleton Model for Tropical Intraseasonal Variability’, which depicts the main characteristics
of large scale MJO dynamics through an easy to understand and eicient algorithm. It was employed
in its nonlinear deterministic version with highest possible truncation in vertical and meridional direc-
tion as introduced by Majda and Stechmann (2011). With the Skeleton model, diferent DA systems
were tested in identical twin experiments.

As a basis, a stochastic EnKF was implemented and tuned by covariance localization and adaptive
multiplicative inlation. This coniguration was used to assess the inluences of diferent observations
on the prediction of the model variables and wave types, i.e. also the MJO. However, the signii-
cant non-Gaussianity in the variable of convective activity could not be respected by the EnKF. To
address this problem, the ilter was subsequently extended to a QPEns. This means that additional
constraints of the analysis ensemble members to the truth’s value of certain properties were imposed,
thus transforming the update step into a numerical optimization problem. Such approach, which was
irst proposed by Janjić et al. (2014), had proved beneicial for handling non-Gaussian probability
distributions in earlier DA toy model studies. Moreover, it appeared especially reasonable in this
work due to two energy conservation principles in the Skeleton model’s underlying equations. Analy-
sis constraints of those, i.e. the moist static and total energy, as well as of the dry mass and a pure
positivity constraint for convective activity were evaluated for their impact of the ilter’s ability to
capture the diferent variables and wave types.

The outcomes of the experiments in this thesis stress the relevance of planetary scale interdependencies
for the MJO. In accordance with earlier work, they furthermore indicate that a good representation
of zonal wind and humidity is important to capture its structure in the Skeleton model. Beyond this,
they yield the new result that – in contrast to moist static energy and dry mass constraints – the
total energy constraint signiicantly improves the iltering of the strictly positive convective activity.
Thereby, it positively inluences also the forecast of the other variables and all wave types, in par-
ticular also the MJO. In case of small background forcing, it can even prevent ilter divergence, that
otherwise occurs due to the neglect or rudimentary treatment of non-Gaussianity.

Future work building on this thesis should be targeted at the veriication and reinement of the above
results in more sophisticated setups with respect to both, the model and the DA system. Possibilities
for this could lie in the several available extensions of the Skeleton model, e.g. for a more detailed
meridional or vertical structure, and/or in the use of real observational data together with the in-
troduction of model error in DA. In case of a too high computational demand of the QPEns with
the nonlinear total energy constraint in more complex conigurations, alternatively a linearized soft
constraint, i.e. pseudo-observations, could be used. This proved comparably beneicial in this work.

Beyond testing this work’s outcomes for their robustness, future research could also be directed to-
wards using the now existing toy model DA setup for further purposes. Due to its inexpensiveness,
it could in particular serve as a test ield for algorithmic improvements with respect to eiciency, e.g.
in the QPEns’ numerical optimization. Modiications such as replacements of operations by neural
networks, iterative linearizations of nonlinear constraints, or optimized sparse matrix representations
could easily be tried out. Thereby, it could help to make such complex algorithms available for oper-
ational NWP.
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Finally, a sophisticated DA routine tailored for MJO prediction – as it will hopefully be achieved
with such further steps – could be employed to examine the inluence of MJO predictability on fore-
casting a range of interconnected weather and climate phenomena. For example with respect to MJO-
ENSO interrelations, a coupled atmosphere-ocean toy model has recently been developed by Thual
et al. (2018). Based on a modiication of the Skeleton model for the atmospheric part, this model is
called ’Tropical Stochastic Skeleton-General Circulation Model’ (TSS-GCM). In addition to the main
characteristics of the MJO, it qualitatively captures important features of the structure, period, and
statistics of ENSO and its interactions with the MJO, i.e. the major components of intraseasonal
to interannual variability in the tropics. Thus, if one was to apply a DA system that was optimized
for MJO dynamics to its atmospheric part, conclusions could be drawn regarding ENSO predictability.

In this sense, due to its multiple links to other atmospheric disturbances reaching as far as into
the extratropics, improving MJO predictability in NWP stays a key issue with large societal impact.
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A List of variables, constants and functions

This appendix lists all variables, constants and functions that were introduced in the above text and
reused with the same meaning but without repeated explanation in subsequent chapters. They are
sorted by the chapter of their irst appearance.

chapter var./const./func. physical meaning
2.1.2 t time

x, y, z zonal position, meridional position, vertical position
u, v zonal wind anomalies, meridional wind anomalies
p pressure anomalies

k, ω zonal wavenumber, angular frequency
Φm, m PCF of order m, meridional mode number

2.2.1 q lower tropospheric moisture anomalies
a envelope of synoptic scale convective activity
θ potential temperature anomalies

sθ, sq background radiative cooling, background latent heating
H scaling constant for convective activity
Γ growth rate of convective activity
Q mean background vertical moisture gradient

2.2.2 M order of meridional model truncation
K structure of unforced Kelvin wave (model variable)
R structure of unforced irst meridional Rossby wave (model variable)
Q amplitude of the projection of q on the irst PCF (model variable)
A amplitude of the projection of a on the irst PCF (model variable)
S amplitude of the projection of sθ/sq on the irst PCF
γ projection operator for the nonlinear equation in the truncated model
L zonal length of domain

2.2.3 A′ perturbation of A above S
X state vector in model variables
X̃i

k linearized model’s eigenmodes for zonal wavenumber k
2.2.4 α parameter for warm pool intensity
2.2.5 M inner product with orthogonality of the linearized model’s eigenmodes
2.3.1 yk observations

xb
k, xa

k background, analysis
Qk,k−1 model error covariance matrix
Rk observation error covariance matrix

Pb
k, Pa

k background error covariance matrix, analysis error covariance matrix
Hk, Hk observation operator, linearized observation operator
n, m dimension of state space, dimension of observation space
Kk Kalman gain matrix

2.3.2 Mk,k−1 nonlinear model
N number of ensemble members

x
b,i
k , xa,i

k background ensemble members, analysis ensemble members

x
b,i
k , xa,i

k background ensemble mean, analysis ensemble mean
rik observation perturbations

2.3.3 Pb
kL localized background error covariance matrix
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C covariance localization matrix
β inlation factor

2.3.4 J i
k cost functions for ensemble members

cl, cm equality constraints, inequality constraints
E , I collectivity of equality constraints, collectivity of inequality constraints

2.3.5 γ skewness
3.1.3 xt

k truth
3.2.2 ME, TE domain integrated moist static energy, domain integrated total energy

DM domain integrated dry mass
3.3.1 RMSE root mean square error

RES relative ensemble spread
3.3.3 C1, C2, C3 conservation properties in the model’s truncated algorithm

76



B List of abbreviations

This appendix lists all abbreviations that are used in the above text in alphabetical order.

abbreviation meaning
CCEW Convectively Coupled Equatorial Wave
CDF Cumulative Distribution Function
DA Data Assimilation

DWD German Weather Service (’Deutscher WetterDienst’)
EAKF Ensemble Adjustment Kalman Filter
EIG Eastward moving Inertio-Gravity (wave)

EnKF Ensemble Kalman Filter
ENSO El Niño-Southern Oscillation
EnSRF Ensemble Square Root Filter
EOF Empirical Orthogonal Function
ER Equatorial Rossby (wave)

ETKF Ensemble Transform Kalman Filter
GC Gaspari-Cohn (function)

GCM General Circulation Model
ICON ICOsahedral Non-hydrostatic (model)
ITCZ InterTropical Covergence Zone
KKT Karush-Kuhn-Tucker (conditions/optimality criteria)

KL-divergence Kullback-Leibler divergence
MJO Madden-Julian Oscillation
MRG Mixed Rossby-Gravity (wave)
NWP Numerical Weather Prediction
OLR Outgoing Longwave Radiation
PCC Pearson Correlation Coeicient
PCF Parabolic Cylinder Function
PDF Probability Density Function

QPEns Quadratic Programming Ensemble
RES Relative Ensemble Spread

RMSE Root Mean Square Error
TSS-GCM ’Tropical Stochastic Skeleton-General Circulation Model’

WIG Westward moving Inertio-Gravity (wave)
3DVar 3-Dimensional Variational assimilation
4DVar 4-Dimensional Variational assimilation
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