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Abstract

A common practice for detecting misspecification is to perform a “robustness test”,
where the researcher examines how a regression coefficient of interest behaves when
variables are added to the regression. Robustness of the regression coefficient is taken
as evidence of structural validity. However, there are numerous pitfalls that can befall
a researcher when performing such tests. For example, we demonstrate that certain
regressors, when added to the regression, will induce a shift in the coefficient of in-
terest even when structurally valid. Such robustness tests would produce false alarm,
suggesting that the model is misspecified when it is not. For a robustness test to be
informative, the variables added to the regression must be carefully chosen based on
the model structure. We provide a simple criterion that allows researchers to quickly
determine which variables, when added to the regression, constitute informative ro-
bustness tests. We also explore the extent to which robustness tests are able to detect
bias, demonstrating that robustness tests enable detection of bias due not only to omit-
ted observable variables but omitted unobservable variables as well. Finally, we give
two extended examples using simulated data to demonstrate how the material in this
paper can be used to conduct informative robustness tests.

1 Introduction

Suppose that economic theory dictates the structural equation

Y = β0D + α0Z + U, (1)

where D is an observable cause of interest, Y is an outcome of interest, Z is an ob-
servable driver of Y , and U represents unobservable drivers of Y , often called a “dis-
turbance” or “error” term1. To estimate the value of β0, we may regress Y on D, and

1D and Z may also be vectors of variables without changing any of the results in this paper but for
convenience we assume that they are singletons.
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a set of variables, W = {W1,W2, ...,Wk}, where Z ⊆ W . This gives the regression
equation

Y = r0D + r1W1 + r2W2 + ...+ rkWk + ε, (2)

where ε is the regression residual and r0 is the partial regression coefficient of D when
Y is regressed on D and W , that is, r0 = rY D.W .

It is well known that β0 is identified and equal to rY D.W if W satisfies the condi-
tional independence D |= U |W , often called the conditional exogeneity assumption. If
this assumption fails then the regression coefficient rY D.W will generally not equal β0.
Unfortunately, since U is unobservable, it is impossible to test whether this assump-
tion holds, and the task of defending the validity of D |= U |W is delegated to human
judgment, which is vulnerable to two sources of error. The first, of course, is model
misspecification: although D |= U |W can in principle be verified from the hypothesized
structure, one can never be sure whether these theoretical assumptions are valid. Sec-
ond, to judge whether D |= U |W holds in a given specified model can be formidable
when multiple equations and multiple U factors are present, some correlated with the
observable variables and some with other U factors.

While the conditional exogeneity assumption is not directly testable, one can iden-
tify various implications of the model structure that can be used to test it against
data. If these implications are found compatible with the data then the model gains
credibility. Consequently, if the model implies conditional exogeneity then it also gains
credibility. Testing the conditional exogeneity assumption along these lines requires
two steps. First, to identify and test all testable implications of the model, and second,
to verify that conditional exogeneity holds in the model. The first step can be rather
involved and is rarely performed in practice. Instead, practitioners resort to shortcuts–
testing only a subset of implications deemed relevant to the conditional exogeneity
assumption2.

A common exercise in empirical studies, which utilizes such shortcuts, is to check
the “robustness” of certain regression coefficients when the regression specification is
modified by including or excluding “control” covariates. Movement by the regression
coefficients of D is then taken as evidence of omitted variable bias or misspecification.
In a recent survey of non-experimental empirical work, Lu and White (2014) found that
of the 76 papers involving data analysis published in The American Economic Review
during 2009, 23 perform a robustness check along the lines just described. Similarly,
Oster (2013) found that 75% of 2012 papers published in The American Economic
Review, Journal of Political Economy, and Quarterly Journal of Economics explored
the sensitivity of results to varying control sets3.

The intuition behind this procedure is rooted on the following heuristic: if bias
is caused by some set W of confounders, then controlling for W (by adding W to
the regression equation) should eliminate that bias. Any further control would then
be unnecessary, and should leave r0 unaltered. The invariance of r0 to additional
regressors is taken as evidence that all confounders have been accounted for, and none

2The methods for testing conditional exogeneity proposed by White and Chalak (2010) can be under-
stood in this manner. However, these methods require specific structural assumptions beyond conditional
exogeneity and are, therefore, not applicable to all models.

3The practice of assessing missing variable bias by observing the sensitivity of an estimator to additional
controls is not unique to economics. A recent survey of articles in major epidemiologic journals by Walter
and Tiemeier (2009) found that 15% of papers used a “change-in-estimate” criterion to select covariates.
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remain outside the set W . Conversely, if r0 shifts with the addition of regressors
beyond W , it is taken as evidence that W was not sufficient to cover all confounders
and, consequently, r0 is likely to be biased and the conditional exogeneity D |= U |W is
likely violated.

This heuristic assumes that bias reduction is monotonic with the number of regres-
sors, that is, that adding regressors cannot create bias where none exists. We will show
that this assumption is false. Certain regressors, if added to W will necessarily change
r0, even when W is sufficient to satisfy the exogeneity condition D |= U |W . We call
such regressors shift-producing. Robustness tests involving shift-producing covariates
are non-informative and produce false alarm when exogeneity holds. We will show how
shift-producing regressors can be identified from the model’s structure.

For informative tests, the connection between robustness and exogeneity is as fol-
lows. If conditional exogeneity holds before and after the addition of regressors then
obviously r0 will be invariant. Conversely, if r0 shifts then conditional exogeneity
must be violated before or after the addition. As a result, if the hypothesized model
structure dictates that exogeneity holds in both cases then the added regressor may
be informative since failure of the corresponding robustness test indicates model mis-
specification. However, as mentioned previously, the task of determining whether ex-
ogeneity holds, even in a well-specified model, can be formidable. As formal and
transparent representations of the model structure, causal graphs provide researchers
with the means to determine, by inspection, whether a given set of variables satisfies
the conditional exogeneity assumption. Utilizing a graphical condition, called single-
door criterion, we are able to quickly identify sets, W1 and W2, for which the model
implies rY D.W1 = rY D.W1W2 = β0. We will show that comparing the corresponding
regressions, rY D.W1 and rY D.W1W2 , constitutes an informative robustness test in that
failure both implies model misspecification and is possible when the conditional ex-
ogeneity assumption is violated. As a result, researchers can focus on the economic
plausibility of the model structure and substitute all other judgments with sound and
reliable mechanical procedures when identifying β0 and finding informative covariates
for robustness testing.

Graphs have been utilized by economists to communicate causal structure and facil-
itate economic problems since the 1930s (Tinbergen, 1939). Orcutt (1952), for instance,
used graphs to represent possible causal structures for a given set of variables and gave
examples illustrating that some graphs are incompatible with certain conditional inde-
pendences among the variables (e.g. zero partial correlation between Z and X given
Y is incompatible with the chain Y → X → Z), thus allowing researchers to reject
certain causal structures. Tinbergen (1939), Wold (1954), and other practitioners of
process analysis also employed graphs to convey the causal relationship between vari-
ables (Hoover, 2004). More recently, graphs have been utilized by White and Chalak
(2009), White and Lu (2011), and Hoover and Phiromswad (2013) to facilitate prob-
lems of identification, optimization, identifying instrumental variables from data, and
more. We will use graphical models primarily to detect conditional independences and
verify identifying assumptions.

Our paper is structured in the following way: We will begin Section 2 by intro-
ducing graphical representations of structural models with special interest on graph
separation, a notion that will play a pivotal role in the results that follow. In Section
3, we introduce the single-door criterion, a necessary and sufficient condition for the
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(a)

(b)

Figure 1: (a) Model with latent variables (Q1 and Q2) shown explicitly (b) Same model with
latent variables summarized

identification of β0 using regression that will allow us to characterize shift-producing
covariates and informative robustness tests in Section 4. We also explore the extent to
which robustness tests are able to detect bias in Section 4, demonstrating that robust-
ness tests are to detect not only omitted observable variables but omitted unobservable
variables as well. In Section 5, we will adapt the results in Sections 3 and 4 for sit-
uations where we are interested in the total effect of D on Y , rather than the direct
effect. Finally, in Section 6, we will give two extended examples using simulated data
to demonstrate how the material in this paper can be used to avoid shift-producing
regressors and conduct informative robustness tests.

2 Preliminaries

2.1 Causal Graphs

We introduce causal graphs by way of example. Suppose we wish to estimate the effect
of attending an elite college on future earnings. Clearly, simply regressing earnings on
college rating will not give an unbiased estimate of the target effect. This is because elite
colleges are highly selective so students attending them are likely to have qualifications
for high-earning jobs prior to attending the school. This background knowledge can
be expressed in the following model specification.

Model 1.

Q1 = U1

C = a ·Q1 + U2

Q2 = c · C + d ·Q1 + U3

S = b · C + e ·Q2 + U4,

where Q1 represents the individual’s qualifications prior to college, Q2 represents qual-
ifications after college, C contains attributes representing the quality of the college
attended, and S the individual’s salary. When specifying models throughout the pa-
per, the error terms (U variables) are independent unless otherwise stated. In this
case, the model assumes that U1, U2, U3, and U4 are independent of one another.
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(a)

(b)

Figure 2: Graphs associated with Model 3 in the text (a) with latent variables shown explic-
itly (b) with latent variables summarized

Figure 1a is a causal graph that represents this model specification. Each variable
in the model has a corresponding node or vertex in the graph. Additionally, for each
equation, arrows are drawn from the independent variables to the dependent variables.
These arrows reflect the direction of causation. In some cases, we may label the arrow
with its corresponding structural coefficient as in Figure 1a. Error terms are typically
not displayed in the graph.

If Q1 and Q2 are unobservable or latent variables their influence on S is gener-
ally attributed to S’s error term. By removing them, we obtain the following model
specification, where σUCUS is the covariance of UC and US :

Model 2.

C = UC

S = βC + US

σUCUS 6= 0

In this case, UC = a ·Q1 +U1 and US = eQ2 +U4, and the background information
specified by Model 1 imply that the error term of S, US , is correlated with UC and,
therefore, correlated with C. As a result, exogeneity does not hold. Dependence
between error terms is depicted in the causal graph as a bidirected arc between the
variables whose error terms are dependent as in Figure 1b.

It is clear that β is not identified in Model 2. However, if we include the strength of
an individual’s college application, A, as shown in Figure 2a, we obtain the following
model:
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Model 3.

Q1 = U1

A = a ·Q1 + U2

C = b ·A+ U3

Q2 = e ·Q1 + d · C + U4

S = c · C + f ·Q2 + U5.

By removing the latent variables from the model specification we obtain:

Model 4.

A = a ·Q1 + UA

C = b ·A+ UC

S = β · C + US ,

Now, β is identified and can be estimated using the regression of S on C and A.
While this conclusion can, in principle, also be reached by consulting the equations
themselves, in more complex models doing so can be infeasible. In Section 3, we will
demonstrate how to obtain this and more complicated identification results using the
causal graph.

In summary, the causal graph is constructed from the model equations in the follow-
ing way: Each variable in the model has a corresponding vertex or node in the graph.
For each equation, arrows are drawn in the graph from the dependent variables to the
independent variable. Finally, if the error terms of any two variables are dependent,
then a bidirected edge is drawn between the two variables.

Before continuing, we review some basic graph terminology. If an arrow, called
(X,Y ), exists from X to Y we say that X is a parent of Y . If there exists a sequence
of arrows all of which are directed from X to Y we say that X is an ancestor of Y .
If X is an ancestor of Y then Y is a descendant of X. The set of nodes connected to
Y by a bidirected arc are called the siblings of Y . Lastly, a collider is a node where
colliding arrowheads meet. Z in Figure 4a is a collider as are C, D, and E in Figure 3.

A path between X to Y is a sequence of edges, connecting the two vertices. A path
may go either along or against the direction of the arrows. A directed path from X to
Y is a path consisting only of arrows pointed towards Y . A back-door path from X to
Y is a path begins with an arrow pointing to X and ends with an arrow pointing to
Y . For example, in Figure 3, C ← B → E, C → D → E, C ← B → D → E, and
C → D ← B → E are all paths between C and E. However, only C → D → E is
a directed path, and only C ← D → E and C ← B → D → E are back-door paths.
The significance of directed paths stems from the fact that they convey the flow of
causality, while the significance of back-door paths stems from their association with
confounding.

A graph is acyclic if it does not contain any cycles, a directed path that begins and
ends with the same node. A graph is cyclic if it contains a cycle. A model in which
the causal graph is acyclic is called recursive while models with cyclic graphs are called
non-recursive.
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Figure 3: Model illustrating the rules of d-separation

(a) (b)

Figure 4: Examples illustrating conditioning on a collider

2.2 D-Separation

D-separation allows researchers to identify conditional independences implied by the
model’s structure from the causal graph and will be utilized extensively in the results
to follow. The idea of d-separation is to associate “correlation” with “connectedness”
in the graph, and independence with “separation”.

Definition 1. (Pearl, 2009, p. 16) A path p is said to be d-separated (or blocked) by
a set of nodes Z if and only if

(i) p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m
is in Z, or

(ii) p contains a collider i → m ← j such that the middle node m is not in Z and
such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a
node in X to a node in Y .

(i) captures the intuition that the correlation between two variables, X and Y , may
vanish when conditioning on common causes or mediating variables. For example, the
correlation between ice cream sale and drowning deaths is often used to show that
correlation does not imply causation. When the weather gets warm people tend to
both buy ice cream and play in the water, resulting in both increased ice cream sales
and drowning deaths. This causal structure is depicted in Figure 5. Here, we see that
Ice Cream Sales and Drownings are d-separated given either Temperature or Water
Activities. As a result, if we only consider days with the same temperature and/or the
same number of people engaging in water activities then the correlation between Ice
Cream Sales and Drownings will vanish.

(ii) is due to the fact that conditioning on a collider or its descendant opens the
flow of information between the parents of the collider. For example, X and Y are
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Figure 5: Graph illustrating why Ice Cream Sales and Drowning are uncorrelated given
Temperature and/or Water Activities

uncorrelated in Figure 4a. However, conditioning on the collider, Z, correlates X and
Y giving X 6⊥⊥ Y |Z. This phenomenon is known Berkson’s paradox or “explaining
away”. To illustrate, consider the example depicted in Figure 4b. It is well known
that higher education often affords one a greater salary. Additionally, studies have
shown that height also has a positive impact on one’s salary. Let us assume that there
are no other determinants of salary and that Height and Education are uncorrelated.
If we observe an individual with a high salary that is also short, our belief that the
individual is highly educated increases. As a result, we see that observing Salary
correlates Education and Height. Similarly, observing an effect or indicator of salary,
say the individual’s Ferrari, also correlates Education and Height.

Berkson’s paradox implies that paths containing colliders can be unblocked by con-
ditioning on colliders or their descendants. Let π′ be a path from X to Y that traces
a collider. If for each collider on the path π′, either the collider or a descendant of the
collider is in the conditioning set Z then π′ is unblocked given Z. The exception to
this rule is if Z also contains a non-collider along the path π′ in which case X and Y
are still blocked given Z. For example, in Figure 3, the path F → C ← A → E is
unblocked given C or D. However, it is blocked given {A,C} or {A,D}.

The following theorem makes explicit the relationship between conditional indepen-
dence and d-separation.

Theorem 1. Let G be the causal graph for a structural model over a set of variables
V . If X ∈ V and Y ∈ V are d-separated given a set Z ⊂ V in G then the model implies
that X and Y are independent given Z.

If X and Y are d-connected given Z then the set of points in the space of parameter
values for which X and Y are uncorrelated given Z has Lebesgue measure zero (Spirtes
et al., 1993). In other words, if X and Y are d-connected given Z then, according to
the model, X and Y are almost surely correlated given Z but may be uncorrelated
given Z for particular parameterizations. For example, it is possible that the values of
the coefficients are such that the unblocked paths between X and Y perfectly cancel
one another. For the remainder of the paper, whenever we invoke the notion of ”almost
surely” it will be in the same sense as we do here: to exclude coincidental cancellations.

8



(a)

‘ (b) (c)

Figure 6: Graphs illustrating identification by the single-door criterion (a) β0 is identified by
adjusting for Z or W (b) The graph Gβ0 used in the identification of β0 (c) β0 is identified
by adjusting for Z (or Z and W ) but not W alone

We use the graph depicted in Figure 3 as an example to illustrate the rules of
d-separation. In this example, F is d-separated from E by A, B, and C. However,
C is not d-separated from E by A and D since conditioning on D opens the collider
C → D ← B. Finally C is d-separated from E by conditioning on A, D, and B.

We conclude this section by noting that d-separation implies conditional indepen-
dence in all recursive causal models, parametric or not (Pearl, 2009). In linear models,
d-separation implies conditional independence in non-recursive models, as well as re-
cursive models (Spirtes, 1995). Further, all vanishing partial correlations implied by a
structural model can be obtained using d-separation (Pearl, 2009, ch. 1.2.3). Finally,
in recursive models with independent error terms, these conditional independences
represent all of the model’s testable implications (Geiger and Pearl, 1993).

3 The Single-door Criterion

The single-door criterion is a necessary and sufficient graphical condition for the iden-
tification of structural coefficients using regression. When all observable drivers of Y
are included in the regression specification then the single-door criterion graphically
characterizes conditional exogeneity4.

Theorem 2. (Pearl, 2000) (Single-door Criterion) Let G be any graph for a linear
model in which β0 is the structural coefficient associated with link D → Y , and let
Gβ0 denote the graph that results when the arrow from D to Y is deleted from G. The
coefficient β0 is identifiable if there exists a set of variables Z such that (i) Z contains
no descendant of Y and (ii) Z d-separates D from Y in Gβ0. If Z satisfies these two
conditions, then β0 is equal to the regression coefficient rY D.Z , and we say that Z is
a single-door admissible with respect to β0. Conversely, if Z does not satisfy these
conditions, then rY D.Z is almost surely not a consistent estimand of β0.

Consider Figure 6a. As an observable driver of Y , W is generally included in
the conditioning set when estimating β0 using regression. The single-door criterion

4Unlike conditional exogeneity, however, the single-door criterion does not require that all observable
drivers of Y be included in the regression. This allows us to obtain additional estimands for β0, which will
prove valuable for robustness testing.
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(a) (b)

Figure 7: Example showing that adjusting for a descendant of Y induces bias in the estima-
tion of β0

confirms that, in this case, exogeneity holds and rY D.W = β0 since W blocks the
spurious path D ← Z → W → Y and D is d-separated from Y by W in Figure 6b.
Theorem 2 tells us, however, that Z can also be used for adjustment since Z also d-
separates D from Y in Figure 6b. Consider, however, Figure 6c. Z and {Z,W} satisfy
the single-door criterion but W does not. Being a collider, W unblocks the spurious
path, D ← Z → W ↔ Y , in violation of Theorem 2, leading to bias if adjusted for.
In conclusion, β0 is equal to rY D.Z and rY D.WZ in Figures 6a and 6c. However, β0 is
equal to rY D.W in Figure 6a only.

The intuition for the requirement that Z not be a descendant of Y is depicted
in Figures 7a and 7b. We typically do not display the error terms, which can be
understood as latent causes. In Figure 7b, we show the error terms explicitly. It
should now be clear that Y is a collider and conditioning on Z will create spurious
correlation between D, UY , and Y leading to bias if adjusted for.

4 Robustness Tests

In this section, we provide a criterion to discern when a shift in the coefficient r0 is
indicative of endogeneity bias and when it is not. Additionally, we demonstrate how
and when robustness tests are able to detect omitted variables, including unobservable
variables.

4.1 Shift-Producing Regressors

Once we have determined that a particular regression coefficient, rY D.W1 , identifies β0,
we may wish to conduct robustness tests in order to check the model assumptions that
imply rY D.W1 = β0. However, a shift in r0 due to the addition of covariates is not
necessarily indicative of model misspecification. In some cases, the model may imply
that adding a particular covariate, W2, will induce such a shift in r0. As a result, the
shift should be expected and is not indicative of endogeneity bias. We will call such
covariates shift-producing.

Definition 2. Given a hypothesized model M that implies rY D.W1 = β0, where β0 is
the parameter of interest, a covariate, W2, is shift-producing for rY D.W1 if the model
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Figure 8: rY D.Z 6= β0 since Z is a collider

(a) (b)

Figure 9: Descendants of D are necessary for both identification of β0 and robustness testing

implies that adding it to the regression of Y on D and W1 will shift the coefficient of
D.

The next theorem uses the model graph to identify regressors that would be shift-
producing for almost all parameterizations of the model.

Theorem 3. Given a hypothesized structural model M that implies rY D.W1 = β0, W2

is almost surely shift-producing for rY D.W1 if W1 ∪W2 does not satisfy the single-door
criterion with respect to β0. Conversely, a set of regressors, W2, is not shift-producing
if W1 ∪W2 satisfies the single-door criterion with respect to β0.

The single-door criterion gives a necessary and sufficient condition for identifica-
tion using regression. Therefore, if W1 ∪ W2 satisfies the single-door criterion then
rY D.W1W2 = β0 = rY D.W1 and adding W2 to the regression of Y on D and W1 should
not shift r0. Conversely, we know that defiance of the single-door criterion implies
that rY D.W1W2 6= β0 = rY D.W1 (for almost all parameterizations of the model) and,
therefore, adding W2 will shift r0 even when rY D.W1 gives an unbiased estimate of β0.

Lu and White (2014) indeed identified some shift-producing regressors by noting
that variables “driven by D” (i.e. descendants of D) should not be included in ro-
bustness tests for β0. This precaution is often justified, but may be overly restrictive.
Graphical analysis allows us to see when variables driven by D are problematic. Effects
of D may be colliders, as in Figure 8 or descendants of Y , as in Figure 7a. In Figure 8,
conditioning on the collider, Z, opens the spurious path, D → Z ← Y . Therefore, Z is
not single-door admissible and rY D.Z 6= β0. Similarly, Z is not single-door admissible
in Figure7a since it is a descendant of Y . As we mentioned in Section 3, conditioning
on Z violates exogeneity by inducing correlation between D and UY , since Z is a de-
scendant of the collider, Y , as shown in Figure 7b. As a result, in both cases, rY D = β0

but rY D.Z 6= β0.
However, indiscriminately discounting descendants of D is a flawed strategy. In

some cases, descendants of D are necessary for identification and can be useful for
robustness testing. For example, if our model is the one depicted in Figure 9a, W1

or W2 must be included in the regression in order to obtain an unbiased estimate of
β0. In Figure 9b, W2 must be added to the regression in order to obtain an unbiased
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Figure 10: Z is not a descendant of D but adding Z to regression induces bias

estimate of β0. Moreover, in the subsequent section on informative regressors, we will
see that adding W2 to the regression of Y on D and W1 in Figure 9a constitutes an
informative robustness test, demonstrating that descendants of D can also be used for
robustness testing.

Finally, discounting variables driven by D is not sufficient to exclude all shift-
producing regressors as non-descendants of D may also be shift-producing. For exam-
ple, in Figure 10, β0 = rY D but β0 6= rY D.W1 even though W1 is not a descendant of D
since conditioning on W1 opens the spurious path, D ↔W1 ↔ Y . As a result, even if
we suspect that W1 may be a confounder, we cannot add it to the regression of Y on
D to test whether this is the case.

In conclusion, while variables driven by D may be shift-producing, excluding all
such variables for identification or robustness testing is both overly restrictive and
insufficient for the exclusion of shift-producing regressors. Instead, Theorem 3 provides
a simple criterion that is necessary and sufficient for a regressor to be shift-producing.

4.2 Informative Regressors

A robustness test is informative when a shift in the regression coefficient, r0, is in-
dicative of bias, and simultaneously, stability of the coefficient provides evidence that
r0 = β0. Such tests are characterized by two properties:

(i) The hypothesized model must imply that r0 equals β0 before and after the addi-
tion of regressors.

(ii) There must be the possibility that the robustness test will fail in the case of
misspecification5.

We know from Theorem 2 that the first condition is satisfied if and only if both W1

and W1∪W2 are single-door admissible. Additionally, if the model is incorrect and W1

is not actually single-door admissible but W1∪W2 is, then the robustness test will fail.
This is the case whenever the model implies that controlling for W1 is enough to obtain
an unbiased estimate of β0 but in reality W2 is necessary as well. For example, suppose
that our model is the one depicted in Figure 9a but, in fact, we are missing an arrow
from W2 to Y , as in Figure 9b. Then comparing rY D.W1 and rY D.W1W2 will detect this
misspecification since rY D.W1 6= rY D.W1W2

6. In general, the second condition is also

5After identifying a set W1 that satisfies the conditional exogeneity assumption, Lu and White (2014)
advocate adding variables W2 such that D |= W2|W1 to the regression of Y on D and W1 for robustness
testing. While D |= W2|W1 does imply that D |= U |W1,W2 when D |= U |W1 (Dawid, 1979) so that the model
implies r0 = β0 before and after the addition of W2, the proposed robustness is non-informative. Pearl
and Paz (2014) show that D |= W2|W1 (see also Lemma 1 below) implies rY D.W1

= rY D.W1W2
, even when

conditional exogeneity is violated. As a result, the proposed robustness test will ALWAYS pass.
6This example also demonstrates our conclusion from the previous section. In some cases, descendants

of D are not only necessary for identification of β0 but also useful for robustness testing.
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satisfied if both W1 and W1∪W2 are single-door admissible in the hypothesized model,
and we obtain the following theorem, which holds for almost all parameterizations of
the data-generating model:

Theorem 4. Given a hypothesized structural model M that implies rY D.W1 = β0, the
robustness test comparing rY D.W1 and rY D.W1W2 is informative for the hypothesis that
rY D.W1 = β0 if and only if W1 ∪W2 is single-door admissible with respect to β0.

Proof. First, we show the sufficiency of Theorem 4. Property (i) of informative ro-
bustness tests is satisfied since both W1 and W1 ∪W2 satisfy the single-door criterion
in the hypothesized model. Property (ii) is satisfied since we can always construct a
possibly “correct” model by adding arrows from W2 to D and Y . If this model is the
correct model, then the robustness test will fail.

The necessity of Theorem 4 holds almost surely since property (i) holds almost
surely if and only if both W1 and W1∪W2 are single-door admissible in the hypothesized
model.

(a) (b)

Figure 11: Given the model depicted in (a), a confounding path not blocked by W1 as in
(b), can be detected by comparing rY D.W1 and rY D.W1W2 .

The above example, depicted by Figures 9a and 9b, demonstrates that informative
robustness tests are able to detect misspecification when the added variable, originally
thought to be irrelevant, is, in fact, an omitted variable or blocks the influence of an
omitted variable. This should not be surprising since adding such a variable to the
regression shifts r0 by negating or reducing the omitted variable bias. As a result,
stability of r0 supports our hypothesis that W2 is not an omitted variable and does not
need to be added to the regression to estimate β0. However, what about other omitted
variables? Can the stability of r0 tell us anything about the presence of omitted
variables other than W2 (or those blocked by W2)? Surprisingly, the answer is yes.

Suppose that our model, given by Figure 11a, is misspecified, and the correct spec-
ification is given by Figure 11b. In this case (Figure 11b), conditioning on W1 makes
W2 an instrumental variable. Since adding an instrumental variable to the regression of
Y on D and W1 in the presence of confounding amplifies the bias of r0 (Bhattacharya
and Vogt, 2007; Wooldridge, 2009; Pearl, 2010), the bidirected edge between D and
Y ensures that rY D.W2 6= rY D.W1W2 and comparing the regressions allows us to detect
the omitted variable bias, even though W2 is neither the omitted variable nor blocks
its influence. Moreover, note that the robustness test was able to detect the omitted
variable bias even though the variable is unobservable and cannot be added to the
regression.
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In general, if the omitted variable is a common cause of D and Y , and the added
covariate, W2, is a non-shift-producing cause (or proxy of a cause) of D, then detection
is possible, even when W2 neither is the omitted variable nor blocks its influence. The
lemma below characterizes when rY D.W1 = rY D.W1W2 and will be used to show how
and when omitted common causes can be detected using robustness tests.

Lemma 1. For a variable S and a set of variables W , rY D.W = rY D.WS if and only if

(i) σSD.W = 0 or

(ii) σY S.DW = 0,

where σXY.Z is the covariance of X and Y given Z7.

Proof. The sufficiency of Lemma 1 follows from Theorem 4 of (Pearl and Paz, 2014).
We now show its necessity by showing that if rY D.W = rY D.WS , then either σSD.W = 0
or σY S.DW = 0.

In general, rY D.WS = rY D.W−rY S.W rSD.W

1−r2SD.W
σ2
D.W
σ2
S.W

. Since we assume that rY D.W = rY D.WS

we get:

rY D.W =
rY D.W − rY S.W rSD.W

1− r2
SD.W

σ2
D.W

σ2
S.W

0 = −rY D.W + rY D.W r
2
SD.W

σ2
D.W

σ2
S.W

+ rY D.W − rY S.W rSD.W

= rY D.W r
2
SD.W

σ2
D.W

σ2
S.W

− rY S.W rSD.W

= rSD.W (rY D.W rSD.W
σ2
D.W

σ2
S.W

− rY S.W )

= rSD.W (rY S.W − rY D.W rSD.W
σ2
D.W

σ2
S.W

)

From the above, we see that either rSD.W = 0, which implies that σSD.W = 0, or

rY S.W − rY D.W rSD.W
σ2
D.W

σ2
S.W

= 0. We also have:

rY S.W − rY D.W rSD.W
σ2
D.W

σ2
S.W

= rY S.Wσ
2
S.W − rY D.Wσ2

D.W rSD.W

= σY S.W − σY D.W
σSD.W
σ2
D.W

= σY S.DW

7 Lemma 1 implies that rY D.W = rY D.WS can be characterized in terms of conditional independences. As
a result, an informative robustness test simply checks that certain model-implied conditional independences
are satisfied in the data. Since all conditional independences implied by the model can be identified using
d-separation, robustness testing would be unnecessary if we check all of the testable implications identified
using d-separation. (An efficient algorithm that utilizes the graph to enumerate a set, not necessarily
minimal, of conditional independences that imply all others is given by Kang and Tian (2009).) However,
some model-implied conditional independences may not be relevant to the conditional exogeneity assumption.
Therefore, while robustness tests may fail to address certain testable implications that can be identified using
d-separation they have the benefit of testing model assumptions that are used specifically in the identification
of β0. See (Pearl, 2004) and (Chen et al., 2014) for more on testing such assumptions.
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Therefore, if rY D.W = rY D.WS then either σSD.W = 0 or σY S.DW = 0.

The theorem below formalizes the conditions under which a robustness test can
detect an omitted common cause, even when the added variable is neither the omitted
variable nor blocks its influence.

Theorem 5. Given a hypothesized structural model M that implies rY D.W1 = β0, an
informative robustness test comparing rY D.W1 and rY D.W1W2 is almost surely able to
detect omitted common bias of rY D.W1 AND rY D.W1W2 if and only if there exists a path
(in the correct model) from W2 to D ending in an arrow or bidirected edge into D that
is not blocked by W1

8.

Proof. Omitted common cause bias of rY D.W1 and rY D.W1W2 implies that model is
misspecified so that there is at least one back-door path between D and Y that is
not blocked by W1 and W1 ∪ {W2}. In this case, we have a model M , which is our
misspecified model, and a model M

′
, which is the correct model. M and M

′
are the

same except M
′

contains at least one back-door path between D and Y that is not
blocked by W1 and {W1,W2} that M does not.

We will show that rY D.W1 6= rY D.W1W2 by showing that the two conditions of
Lemma 1 are violated. First, there exists a path from W2 to D that is not blocked by
W1 in M

′
by assumption and (i) is violated. Second, since there is a path from W2

to D ending in an arrow or bidirected edge into D that is not blocked by W1 and a
back-door path between D and Y that is not blocked by W1 or W2 we know that W2

is connected to Y given D and W1 through a path W2... → D ← ... → Y and (ii) is
violated. As a result, rY D.W1 6= rY D.W1W2 .

We now prove the necessity of Theorem 5. According to Lemma 1, if rY D.W1 6=
rY D.W1W2 then σW2D.W1 6= 0 and σW2Y.DW1 6= 0. σW2D.W1 6= 0 tells us that there exists
a path from W2 to D that is not blocked by W1. We need to show that this path ends
in an arrow or bidirected edge into D in M

′
.

σW2Y.DW1 6= 0 tells us that there is a path from W2 to Y that is not blocked by
D and W1. Since W2 is an informative regressor with respect to rY D.W1 , W1 and
W1∪{W2} are single-door admissible in M and we know that W1 must block any path
between W2 and Y in M . This implies that W1 blocks all paths between W2 and Y in
M

′
as well, since the only difference between M

′
and M are back-door paths between

D and Y that are not blocked by W1 and W1 ∪ {W2}. Now, the only possibility of an
unblocked path between W2 and Y given D and W1 is that there exists a path from
W2 to D ending in either an arrow or bidirected edge into D so that D is a collider,
which opens a path W2...→ D ← ...Y that goes through an unaccounted for back-door
path.

8If the conditions of Theorem 5 (W2 is connected to D via a path ending in an arrow or bidirected edge
into D that is not blocked by W1 and W1 is single-door admissible) hold in the hypothesized model, then
the model implies that W2 is an instrumental variable given W1 (Brito and Pearl, 2002; Chen and Pearl,
2014). As a result, the Hausman test for endogeneity, where the estimate of β0 using the instrumental
variable,

rY W2.W1

rDW2.W1
, is compared to the estimate using regression, rY D.W1 , is applicable. In fact, both the

Hausman and robustness tests check the same model-implied constraints. The Hausman test checks that
rY W2.W1

rDW2.W1
= rY D.W1

. Rearranging terms we get rYW2.W1
− rY D.W1

rDW2.W1
= 0, which is true if and only if

σYW2.DW1 = 0. Likewise, the robustness test checks that rY D.W1 = rY D.W1W2 , which according to Lemma 1
also holds if and only if σYW2.DW1

= 0. The same constraint could also be obtained using d-separation (see
footnote 7).
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(a)

(b)

Figure 12: The bidirected edge from W2 to D allows us to detect the latent confounder
depicted in (b) from the hypothesized model depicted in (a) by adding W2 to the regression
of Y on D and W1.

Returning to the hypothesized model depicted in Figure 11a, we see that adding
W2 to the regression of Y on D and W1 is able to detect the latent confounder in
the correct model, depicted in Figure 11b, since there is an arrow from W2 to D.
Similarly, suppose that we hypothesize the model depicted in Figure 12a. Both {W1}
and {W1,W2} are single-door admissible sets so adding W2 to the regression of Y on D
and W1 represents an informative robustness test. Moreover, Theorem 5 tells us that
stability of r0 provides evidence that rY D.W1 does not suffer from omitted variable bias
due to W2 or other common causes since W2 is connected to D by a bidirected edge.
If, on the other hand, the correct model is the one depicted in Figure 12b, then adding
W2 to the regression will shift r0 and detect the latent omitted variable.

Theorems 4 and 5 provide us with the means to answer the question: Have all
necessary confounders been accounted for? If we believe that a set W1 is adequate to
cover all confounders, then we can test this assumption by adding non-shift-producing
variables to the regression. If a variable, W2, does not shift r0, then we can rest assured
that W2 is not an omitted variable. If W2 is a cause or proxy of a cause of D, then we
further know that there are no other unaccounted for common causes.

(a) (b)

Figure 13: If the true model is given by (b) but the hypothesized model is given by (a)
then using W1 for identification of β0 and adding W2 to test robustness is able to detect
misspecification but not the other way around.

Lemma 1 and Theorem 5 also demonstrate that some informative robustness tests
may be “more informative” than others. For example, suppose that our hypothesized
model is given by Figure 13a but the correct model is the one depicted in Figure 13b.
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(a)

(b)

Figure 14: In both graphs, the total effect of D on Y is identifiable even though some of
the individual coefficients comprising the effect are not. In (a), the total effect of D on Y is
given by rY D while in (b), the total effect of D on Y is given by rY D.Z .

Using Theorem 5, we see that comparing rY D.W1 and rY D.W1W2 allows us to detect the
missing latent confounder since W2 is a parent of D. However, while both {W2} and
{W1,W2} are single-door admissible in the hypothesized model, rY D.W2 = rY D.W1W2

whether there is a latent confounder or not, and we cannot detect a possible latent
confounder by comparing these two regressions. This is easily verified using Lemma 1
since W1 |= D|W2.

In general, if both W1 and W2 are single-door admissible but W2 blocks all paths
between W1 and D, adding W2 to the regression of Y on D and W1 may allow the
detection of an unobservable confounder but adding W1 to the regression of Y on D
and W2 will not. This is formalized in the corollary below.

Corollary 1. Given a hypothesized structural model M , where W1 and W2 are both
single-door admissible sets for β0 but W2 blocks all paths between W1 and D, the robust-
ness test comparing rY D.W1 and rY D.W1W2 is more informative than the robustness test
comparing rY D.W2 and rY D.W1W2. The latter detect omitted variable bias only when
W2 is the omitted variable, while the former test may be able to detect bias due to other
common causes.

Proof. In this corollary, we assume that the only difference between the proposed
model, M , and the correct model, M

′
is that M

′
has a back-door path between D

and Y not blocked by W1 or W2. As a result, D |= W2|W1 and rY D.W2 = rY D.W1W2 .
However, if there is an unblocked path between W2 and D ending in an arrow or
bidirected edge into D then Theorem 5 tells us that rY D.W1 6= rY D.W1W2 .

Moreover, previous work by Kuroki and Miyakawa (2003) and Hahn (2004) have
shown that, in this case, r̂Y D.W2 is preferable to r̂Y D.W1 for estimating β0 in terms
of asymptotic efficiency. The intuition here is that W2 is “closer” to Y , hence more
effective in reducing variations due to uncontrolled factors.

5 Total Effects

Thus far we have considered the case where we wish to evaluate our estimate of the
direct effect of D on Y . However, in some cases, we may be interested in the total
effect of D on Y (given by sums of products of coefficients along all directed paths from
D to Y ) rather than the direct effect (given by a single structural coefficient). In this
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section, we will discuss how the above results can be used for robustness tests when
the quantity of interest is the total effect. First, we introduce the back-door criterion,
which is a necessary and sufficient condition for the identifiability of a total effect using
regression.

Theorem 6. (Pearl, 2009, ch. 3) (Back-door Criterion) For any two variables D and
Y in a model with causal diagram G, the total of effect of D on Y is identifiable by
regression if and only if there exists a set of measurements Z such that

(i) no member of Z is a descendant of D9; and

(ii) Z d-separates D from Y in the subgraph G
¯
D formed by deleting from G all arrows

emanating from D.

Moreover, if the two conditions are satisfied, then the total effect of D on Y is given
by rY D.Z and we say that Z is a back-door admissible set.

For example, in Figure 14a, the total of effect of D on Y is rY D since D is d-
separated from Y when arrows leaving D are removed from the graph. Likewise, the
total effect of D on Y in Figure 14b is rY D.Z since Z blocks all paths between D and
Y when arrows emanating from D are removed.

The above examples also demonstrate that we may be able to identify the total
effect even when the individual coefficients comprising it are not identified10. In both
cases, the total effect was identifiable even though α is not.

Theorem 6 allows us to adapt Theorems 3 and 4 when the quantity of interest
is a total rather than direct effect. We simply use the back-door criterion instead of
the single-door. Similarly, Theorem 5 can be adapted and, in fact, strengthened since
omitted variable bias when estimating total effects is due only to omitted common
causes.

Theorem 7. Given a hypothesized structural model M with β0 the total effect of D
on Y , an informative robustness test comparing rY D.W1 and rY D.W1W2 is able to detect
omitted variable bias of rY D.W1 AND rY D.W1W2 if and only if there exists a path from
W2 to D ending in an arrow or bidirected edge into D that is not blocked by W1

11.

Lastly, Corollary 1 also holds when β0 is the total effect of D on Y . We simply
replace the single-door criterion with the back-door criterion.

6 Example

In this section, we give two examples using simulated data to demonstrate how the
above material can be used to avoid shift-producing regressors and conduct informative
robustness tests. In the first example, we will demonstrate how Theorem 3 can aid in
the detection of shift-producing regressors. In the second example, we will demonstrate

9Descendants of D can be included in the conditioning set, Z, so long as spurious paths between D and
Y opened by descendants of D are blocked by Z. However, such variables can always be excluded without
inducing bias.

10The ability to answer policy questions even when individual parameters are not identified was first noted
by Marschak (1942). This principle was dubbed “Marschak’s Maxim” by Heckman (2000).

11Again, the sufficiency of this theorem holds almost surely since the correct model may parameterized
in such a way that certain paths cancel one another.
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how Theorem 4, Theorem 5, and Corollary 1 can be used to ensure that a given estimate
is free of omitted variable bias.

For each simulation, we utilize the tr robust test function from the testrob Matlab
procedure given by Lu and White (2014). This function conducts a Hausman-style
test to determine whether a given robustness test passes or fails. For each example,
we conducted 100,000 trials with a sample size of 1,000. Error terms were drawn from
Gaussian distributions with mean 0 and variance 1. Additionally, the coefficients for
each equation/arrow are drawn uniformly at random from the interval (0.5, 1). We give
the percentage of trials for which a given robustness test passes, as well as whether the
proposed regression coefficient accurately estimates β0, according to a t-test at a 5%
significance level.

6.1 Example 1

Suppose that we have the following hypothesized model, depicted graphically in Figure
10, and we wish to estimate β0.

Model 5.

D = UD

W1 = U1

Y = β0D + UY

σUDU1 6= 0

σUY U1 6= 0

First, we note that it is not immediately obvious from the equations whether we
should condition on W1 or not. W1 is correlated with both D and Y , and it is not driven
by D. In this sense, it seems like a confounder that should be added to the regression.
However, the single-door criterion tells us that rY D.W1 6= β0 since conditioning on W1

opens the spurious path, D ↔ W1 ↔ Y . Instead, β0 = rY D. Indeed, when using data
generated according to Model 5, we find that rY D = β0 in 94.98% of trials.

Now, suppose that we suspect that W1 is a driver of Y and that the equation for
Y is actually

Y = β0D + αW1 + UY .

In this case, β0 6= rY D. As a result, we would like to add W1 to the regression to test
whether this is the case. However, Theorem 3 tells us that W1 is shift-producing and
that even if Model 5 is correct, the regression coefficient will shift. As a result, such
a robustness test is non-informative. Indeed, adding W1 to the regression of Y on D
shifts r0 in 100% of trials using data generated according to Model 5.

6.2 Example 2

In this next example, we will demonstrate how to conduct informative robustness tests
to ensure the lack of omitted variable bias when estimating β0. Suppose that we have
the following hypothesized model, depicted in Figure 15a:
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(a)

(b)

Figure 15: (a) Initial hypothesized graph used in Section 6.2 (b) Actual graph used in Section
6.2

Model 6.

W1 = bW2 + U1

W2 = U2

W3 = U3

D = aW1 + dW3 + UD

Y = β0D + cW1 + UY

In the hypothesized model, all error terms are independent of one another. However,
let us suppose that, in reality, U3 and UY are correlated, as shown in Figure 15b.

Using the single-door criterion and the graph for the hypothesized model, depicted
in Figure 15a, we see that Model 5 implies that rY D.W1 = rY D.W2 = rY D.W1W2 = β0.
As a result, adding W1 to the regression of Y on D and W2 and adding W2 to the
regression of Y on D and W1 both represent informative robustness tests. Corollary
1, however, tells us that the latter is “more informative” than the former. Indeed, the
latter test detects the bias due to the omitted variable, W3, in 80.40% of trials while
the former does so in only 5.07% of trials.

After observing a shift when adding W2 to the regression of Y on D and W1, we
may very well wonder if the detected omitted variable bias of rY D.W1 is remedied by
adding W2 to the regression or if other variables are necessary, as well. In other words,
we may wonder if the correct model is the one in which the equation for Y is

Y = β0D + cW1 + eW2 + UY

and/or U3 is correlated with UY (depicted in Figure 16a). In each case, β0 = rY D.W1W2 .
To test this hypothesis, we consult Figure 16a, and we see that adding W3 to the
regression of Y on D, W1, and W2 is an informative robustness test that is capable
of identifying omitted variable bias of rY D.W1W2 due to either W3 or another variable
entirely.

Adding W3 shifts r0 in 100% of trials, and we conclude that rY D.W1W2 6= β0. At
this point, we are out of variables to add to the regression. However, recall that adding
W2 to the regression of Y on D and W1 shifts r0 when rY D.W1 suffers from omitted
variable bias due to W2 OR other variables. As a result, it is possible that W3, not W2,
was responsible for the omitted variable bias that shifted r0 when comparing rY D.W1

and rY D.W1W2 . This hypothesized model is depicted in Figure 16b and rY D.W1W3 = β0
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(a)

(b)

Figure 16: (a) Hypothesized graph where rY D.W1W2 = β0 (b) Hypothesized graph where
rY D.W1W3 = β0

can be tested by adding W2 to the regression. In 94.99% of trials, r0 does not shift
and the robustness test passes. As a result, we conclude that W2 is not an omitted
variable. Furthermore, we correctly conclude that there are no other omitted common
causes because Theorem 5 tells us that the edge, W2 → D, ensures that our robustness
test would have detected such bias. As expected, in 95.11% of trials rY D.W1W3 = β0.

7 Conclusion

Robustness tests are a valuable tool in testing the structural validity of regression co-
efficients. However, the covariates involved in such tests must be carefully selected
according to the economic model. Certain covariates will produce a shift in r0 when
added to the regression, even when it was structurally valid prior to the addition of
regressors. A robustness test is informative only when the economic model implies
that the regression coefficient is equal to the structural coefficient before and after the
addition of regressors. We have given simple graphical criteria that allow researchers to
quickly determine which regression coefficients are structurally valid, according to the
model. As a result, they not only aid researchers in the selection of covariates for iden-
tification but also for informative robustness tests. Additionally, we have shown that
robustness tests are not only able to detect bias due to omitted observable variables but
unobservable variables as well. We provided a theorem characterizing when detection
of omitted common causes is possible. Finally, we gave two extended examples using
simulated data demonstrating how these results can be used to avoid shift-producing
regressors and conduct informative robustness tests.
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