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Predictability of convective precipitation depends on the interaction between
synoptic forcing and local-scale flow characteristics. In order to assess different
predictability levels it is desirable to objectively determine the dominant processin a
given meteorological situation. Such a measure is given by the convective adjustment
time-scale 7, a physically based quantity that distinguishes between strong and weak
synoptically forced precipitation regimes. By employing the convective adjustment
time-scale diagnostic, forecasts of the convection-permitting COSMO-DE ensemble
prediction system available for a total of 88 days in summer 2009 are examined.
Based on the normalized ensemble spread of hourly precipitation rates, it is shown
that the practical predictability of total precipitation is higher during strong large-
scale forcing than during weak forcing. Likewise, the forecast skill, determined
using two deterministic scores, is higher during strong than during weak forcing
conditions. Different predictability levels of convective precipitation can be revealed
by examining distinct sub-ensembles depending on their source of uncertainty.
The impact of variations in the boundary conditions of the driving global models
used in the ensemble system is quite insensitive to the prevailing flow regime,
while the impact of physics perturbations representing the model error is clearly
weather regime dependent, exhibiting a strong contribution only during weakly
forced conditions. Then convective precipitation turns out to be especially sensitive
to variations in the physics parametrization even at forecast lead times of 12 to
18 hours during the main convective period in the afternoon. Two case-studies
exemplifying the strong and weak forcing regimes are shown, to illustrate how
forecast skill varies and the different ensemble members cluster as the precipitation
event evolves.
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1. Introduction

In meteorology the term ‘predictability’ describes the
characteristic of atmospheric weather prediction models
being sensitive to errors in initial conditions (Thompson,
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1957), boundary conditions and model error. Early work by
Lorenz and others during the 1960s and 1970s focused on
weather and the state of the midlatitude troposphere and
provides a framework regarding forecasting and predictabil-
ity. Lorenz defined predictability as ‘a limit to the accuracy
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with which forecasting is possible’ (Lorenz, 1969). He later
refined his view, providing two aspects of predictability:
‘intrinsic predictability — the extent to which the prediction
is possible if an optimum procedure is used’ and ‘practical
predictability — the ability to predict based on the procedures
currently available’ (Lorenz, 2006; Zhang et al., 2006).

In the last decade, high-resolution atmospheric models
with kilometre-scale horizontal mesh sizes where deep
convection is represented explicitly rather than by a convec-
tion parametrization have been put in operation at many
meteorological services (e.g. Davies etal., 2005; Baldauf
etal,, 2011; Seity etal, 2011). These non-hydrostatic,
convection-permitting weather forecast models improve
the realism and forecast quality of precipitation (Kain et al.,
2008; Lean et al., 2008; Rotach et al., 2009; Weusthoff et al.,
2010). Now, the application of short-range convection-
permitting models calls for an examination of both aspects
of predictability of the simulated small-scale atmospheric
phenomena, since the time-scale of atmospheric instabilities
is related to their spatial scales, and small-scale instabilities
grow much faster than those with larger scales (Kalnay,
2003). The spatio-temporal highly variable and intermittent
precipitation field exhibits a characteristic fingerprint of
such small-scale instabilities.

Quantifying the predictability of precipitation forecasts
associated with new forecasting procedures (i.e. convection-
permitting models) is therefore an important issue (Errico
et al., 2002). Intrinsic predictability can be studied using
a perfect model assumption in conjunction with tiny
initial condition uncertainties (i.e. uncertainties an order of
magnitude smaller than the analysis error) and examining
the error growth (e.g. Zhang et al, 2003, 2006; Bei and
Zhang, 2007). Practical predictability can be examined
with ensemble prediction systems that sample the different
sources of uncertainty. In general, ensemble forecasts aim
to span the space of possible scenarios by perturbing the
different sources with realistic values and aim to provide a
measure of confidence in the forecast.

The usefulness of limited-area ensemble prediction
systems at mesh sizes of the order of 10 km in terms
of quantitative precipitation forecasting (e.g. Marsigli
etal., 2004; Bowler etal, 2008; Montani etal, 2011)
has fostered the development of convection-permitting
ensembles at kilometre-scale resolution. Clark et al. (2009)
compared the precipitation forecast skill between a
convection-parametrizing ensemble and a convection-
permitting ensemble and found superior skill for the
high-resolution ensemble comprising fewer members.
They conclude that it is highly desirable to increase the
ensemble resolution even at the expense of reducing the
ensemble size for given computational resources. Similarly,
Hohenegger et al. (2008) compared the performance of a
regional, convection-parametrizing ensemble system with a
convection-permitting ensemble for the August 2005 Alpine
flood event. They showed that the benefit of convection-
permitting ensembles depends on the synoptic situation.

Predictability of total precipitation strongly depends on
both the synoptic-scale circulation patterns and local-
scale flow characteristics. Under strong synoptic forcing
(e.g. along fronts or on the leading edge of upper-level
troughs) the precipitation is often associated with large-scale
ascent that cools the troposphere and creates conditional
instability. These situations are often realistically captured
by high-resolution models resulting in a comparatively high
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forecast quality. When precipitation is controlled by synoptic
scales, precipitation is more predictable (e.g. Roebber et al.,
2008) and, hence, its forecast uncertainty is relatively low.
Conversely, when precipitation is governed by local-scale
flow characteristics and the interaction with the synoptic
flow is weak (e.g. during air-mass convection situations
beneath a high-pressure ridge in a weak gradient field of
equivalent potential temperature) the forecast quality of
precipitation is lower. That is, precipitation during these
weather regimes is less predictable and forecast uncertainty
is high (Zhang et al., 2006; Trentmann et al., 2009; Barthlott
etal., 2011). Under these weakly forced flow conditions,
local-scale processes such as solar insolation, local orography
or different vegetation cover and their complex interactions
can lead to surface flux variability and thermally driven
wind systems. Emerging convergence lines in the boundary
layer can be sufficient to overcome an existing energy
barrier (convective inhibition, CIN) to release the available
convective instability (convective available potential energy,
CAPE) and trigger precipitation processes in the absence of
synoptic-scale forcing.

Stensrud et al. (2000) studied the development of two
mesoscale convective systems with regional, convection-
parametrizing ensembles. They found that the initial
condition ensemble is more skilful than the model physics
ensemble when the synoptic forcing is strong, while the
model physics ensemble shows more skill when the synoptic
forcing for upward motion is weak. Schwartz et al. (2010)
evaluated precipitation forecasts of a convection-permitting
ensemble employing the WRF (Weather Research and
Forecasting) model during the National Oceanic and
Atmospheric Administration (NOAA) Spring Experiment
2007. Validating 12-hourly accumulated rainfall totals for
a 35-day period across the continental United States, they
found that initial conditions play an important role in
modulating the precipitation and that precipitation spread
can be achieved by varying the physical parametrizations
within an ensemble system. Vié etal. (2011) studied the
forecast uncertainty of Mediterranean heavy precipitation
events perturbing convective-scale initial conditions and
lateral boundary conditions in the convection-permitting
AROME (Application of Research to Operations at
Mesoscale) model. They concluded that the synoptic
circulation plays a dominant factor controlling the relative
impact of both perturbations. In the case of strong synoptic
forcing the impact of the uncertainty in the lateral boundary
conditions (LBC) is predominant, while in the case of weaker
large-scale circulation the impact of the convective-scale
perturbations introduced at initial time is enhanced.

A multi-parameter and multi-boundary approach to
focus on uncertainties in model physics and LBCs has
been developed at Deutscher Wetterdienst (DWD) based
on the convective-scale COSMO-DE (Consortium for Small
Scale Modelling) model (Gebhardt et al., 2011). Using these
COSMO-DE-EPS (Ensemble Prediction System) forecasts
covering a 15-day period in summer 2007 they concluded
that the impact of the physics perturbations dominates
during the first six hours of the forecast, but can also be
relevant at longer lead times in some cases.

In many studies the classification in a strongly or weakly
synoptic forced flow regime is based on a subjective
forecaster-based analysis of the meteorological situation.
For instance, Vié et al. (2011) used the mean 500 hPa wind
speed at a 12 hours forecast range above or below the
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monthly median to delineate days with strong or weak
synoptic forcing conditions. This may be feasible for a
limited amount of case-studies, but becomes infeasible for
longer periods. Thus it is desirable to objectively distinguish
the different modes of interaction between synoptic forcing
and convection and to determine the dominant process in a
given meteorological situation. The convective adjustment
time-scale constitutes such a measure to discern different
flow regimes (see detailed description in next section).
Recently, Keil and Craig (2011) applied this physically based
measure to determine prevailing meteorological conditions
during summertime convection. Using COSMO-DE-EPS
forecasts on nine consecutive days in summer 2007 they
examined the regime-dependent forecast uncertainty of
precipitation and suggested the convective adjustment time-
scale as a suitable predictor of the flow regime and, hence,
forecast uncertainty of convective precipitation.

In this study the hypothesis that the convective adjustment
time-scale indicates forecast uncertainty of precipitation is
verified using ensemble forecasts of an entire summer period
in central Europe. The following questions are addressed:
Do the two sources of uncertainty represented in the
COSMO-DE-EPS system influence practical predictability
differently depending on the type of forcing? Is the forecast
uncertainty more sensitive to LBCs during precipitation
situations associated with strong synoptic forcing by
midlatitude weather systems? And conversely: Are the
physics perturbations more important during air-mass
convection situations, when convective precipitation is
triggered by local, small-scale processes under weak large-
scale forcing?

The structure of the article is as follows. Section 2 describes
the convective adjustment time-scale 7. In section 3 the
convection-permitting ensemble system, the observational
data, the applied methodology and the examined period
are described. Section 4 comprises the results containing
a climatological classification of the summer 2009, an
analysis of weather regime dependent practical predictability
and forecast quality exploiting the full ensemble, and an
assessment of the impact of different sources of uncertainty
by comparing different sub-ensembles. In section 5 distinct
case-studies illustrate the regime-dependent forecasting
characteristics during both weather conditions. A summary
and an outlook are given in section 6.

2. The convective adjustment time-scale t

To some degree convective precipitation is under the control
of the large-scale environment. Primarily two scenarios can
be distinguished. First, in the presence of strong synoptic
forcing, the amount of convection is determined by the
rate at which conditional instability (CAPE) is produced by
large-scale ascent cooling the troposphere. As long as CAPE
is available, convection will occur and remove CAPE with
a time-scale of about one hour. In this case, the amount
of convection is closely linked with the synoptic forcing.
Second, in the absence of synoptic forcing, local processes
in the boundary layer are essential to overcome the energy
barrier of convective inhibition (CIN) in order to trigger
convection. Even in the presence of CAPE, convection will
not occur if triggering mechanisms initiating convection
are missing during weak large-scale forcing. In this case,
the amount of convection is controlled by the interaction
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of triggering processes and CIN, and no close relationship
between the larger scales and convection is expected.

The convective adjustment time-scale T represents a
measure to distinguish the different flow regimes. It is
an estimate of the time-scale for the removal of conditional
instability (measured by CAPE) by convective heating:

CAPE
T=—
ACAPE/dt

Following Done et al. (2006), the rate of change of CAPE
can be expressed by the vertically integrated latent heat
release that, in turn, can directly be determined from the
precipitation rate P (kgs~! m™2). The convective adjustment
time scale T can be estimated as

To\ CAPE
v =05 (220 _—
L.g p

with the quantities in brackets being constants (py and
Ty are reference values of density and temperature, ¢, the
specific heat of air at constant pressure, L, the latent heat
of vaporization, and g the acceleration due to gravity (e.g.
Zimmer et al., 2011)). If 7 is only a few hours and therefore
short compared to the time-scale over which the large-scale
flow evolves (say 12 hours), the convection will remove
CAPE as fast as it is created, and the rate of creation of CAPE
controls the amount of convection. On the other hand, if t
is similar to, or longer than 12 hours, convection is acting
too slowly to remove the CAPE, and there must be local
factors controlling its rate. It is important to note, however,
that the resultant convective adjustment time-scale value
should not be taken at face value; it rather gives an estimate
to classify the prevailing meteorological regime with strong
and weak forcing situations being extremes of a continuous
distribution. Since the convective adjustment time-scale is
determined by the ratio of CAPE and precipitation rate, it
is sensitive to the specific calculation of both ingredients. A
reasonable threshold to distinguish between the prevailing
regimes would be between 3 and 12 hours, but the precise
value is not crucial since the vast majority of values are either
larger or smaller than this range (Zimmer et al., 2011).

Using COSMO-DE forecast data, t is computed using
the mean layer CAPE (based on the mean temperature
and humidity of the lowest 50 hPa following Leuenberger
et al. (2010)) and hourly total precipitation rates. Since the
time-scale represents an environment in which convection
occurs, both fields are smoothed with a Gaussian kernel
(with a half-width size of 56 km) prior to its calculation. An
hourly, area-averaged convective adjustment time-scale is
calculated conditional to COSMO-DE grid points receiving
more than 1 mm rainfall per hour to exclude dry areas where
T cannot be computed.

The measure of the convective adjustment time-scale ©
has already been successfully applied to examine ensemble
bias and spread of precipitation (Done et al., 2006, 2011;
Keil and Craig, 2011), to assess the length of impact of
radar data assimilation in COSMO-DE (Craig et al., 2012),
to distinguish the skill of probabilistic forecasts (Kober
etal, 2013), to study severe precipitation events in the
Mediterranean using re-analysis data (Molini et al., 2011)
and to classify observed summertime precipitation (Zimmer
etal.,2011).
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Figure 1. Domain of COSMO-DE-EPS with coastlines, political boundaries and topographic heights of the model orography (left). The dashed square
indicates the verification domain of quantitative precipitation forecasts. The design of COSMO-DE-EPS is characterized by the same global model in the
rows and the same physics perturbation in the columns (right). For instance, the sub-ensemble PHY1 consists of members 1 to 5 driven with the same
ECMWF LBC but variable physics perturbation. PHY2 is driven by the global model of DWD, PHY3 by NCEP and PHY4 by UKMO, while the different
columns consist of members having the same physics perturbation but different LBC: LBC1 with perturbed entrainment rate for shallow convection,
LBC2 with critical value for oversaturation, LBC3 and LBC4 by different scaling factor of the laminar boundary layer for heat and LBC5 by asymptotic
mixing length of turbulence. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

3. Dataand methods

3.1.  The limited-area ensemble prediction system

In the present study, ensemble forecasts of the COSMO-
DE-EPS performed at DWD are examined. In COSMO-DE-
EPS the non-hydrostatic convection-permitting COSMO-
DE model (Baldauf etal, 2011; Ax =2.8 km) is put
in ensemble mode by following a multi-parameter and
multi-boundary approach to include uncertainties in model
physics and LBCs (Gebhardt et al., 2011). Uncertainties in
the LBCs stem from the COSMO-SREPS (Marsigli ef al.,
2008; Ax =10 km) which itself is driven by the four
global models run at the European Centre for Medium-
range Weather Forecasts (ECMWF), the DWD, the National
Centers for Environmental Prediction (NCEP) and the UK
Met Office, respectively. The five physics perturbations are
accomplished in a non-stochastic and uniform approach
by varying one parameter for each perturbation (see details
in Fig. 1 and Tab. I of Peralta et al. (2012), respectively).
These parameters are chosen to maximize the variability of
convective precipitation. The matrix structure of the 20-
member COSMO-DE-EPS is depicted in Figure 1, where
the rows represent the four global models and the columns
the five physics perturbations. COSMO-DE-EPS forecasts
are started daily at 0000 UTC based on the operational
COSMO-DE analysis (including data assimilation) with a
forecast range of 24 hours. Here hourly precipitation rates
of all forecast lead times are examined. Note that COSMO-
DE-EPS was experimental at the time of the current study
and the set-up used here does not completely represent its
current operational (since 22 May 2012) status.

For validation purposes synthetic radar reflectivity at the
850 hPa pressure surface is used as a proxy for precipitation
intensity that is calculated with a forward operator using
information from the hydrometeor distribution of rain,
snow and graupel at every grid point of the model (Seifert
and Beheng, 2006). It forms the basis to assess forecast
quality employing a mosaic of observed radar reflectivity
data.
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3.2.  Radar observations

Forecast quality is validated using hourly radar reflectivity
data of the European radar composite. This continental
radar mosaic covers an area of 1800 x 1800 km? over
Europe including the entire COSMO-DE domain. It delivers
instantaneous radar intensities given in six reflectivity classes
(7, 19, 28, 37, 46, 55 dBZ) at a horizontal resolution of
2 km and is mapped on the model grid for comparison.
The threshold to calculate the quality is 19 dBZ which
corresponds to a rain rate of 1 mm h~!, and is identical to
the threshold used to compute the area-averaged convective
adjustment time-scale.

3.3. The methodology

The evaluation region covers the COSMO-DE domain
excluding a frame of 32 grid points to allow for a clean
Gaussian kernel averaging and to discard possible edge
effects (Figure 1). This results in an area of 1090 x 1200 km?
encompassing central Europe, extending from Paris to
Vienna and Milan to Copenhagen. In order to address
the open questions, certain sub-ensembles sharing the
same LBCs or the same physics perturbation as well as
individual members are evaluated besides the full ensemble.
For instance, the members 1-5 driven by ECMWF form
the PHY1 sub-ensemble, since the variability within this
group stems from the different physics perturbations using
identical LBCs (corresponding to e.g. the physics ensemble
in Stensrud etal. (2000)), or members 5, 10, 15, 20 run
with the same perturbed turbulent mixing length form the
sub-ensemble LBC5 obtaining the variability from different
LBCs (Figure 1).

To assess the precipitation forecast quality the exam-
ination is conducted using two widely used categorical
deterministic scores. The frequency bias index (FBI) mea-
sures relative frequencies of precipitation rates exceeding a
threshold and gives an indication of an over- (FBI > 1) or
underestimation (FBI < 1) of precipitation (WMO, 2012).
The equitable threat score (ETS) measures the fraction of
events exceeding a threshold at individual grid locations
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in either model or observation (Wilks, 2006). A simi-
lar validation methodology has been performed by Kong
etal. (2009). Since the aim of the current study is the
examination of regime-dependent practical predictability
employing the convective adjustment time-scale, relative
differences of forecast precipitation rates of the individual
members or sub-ensembles are relevant. More sophisticated
spatial verification measures avoiding the ‘double-penalty’
problem, like upscaling, the fractional skill score (Roberts
and Lean, 2008; Weusthoff etal, 2010) or probabilistic
verification measures are not applied here.

As a measure of predictability, a normalized ensemble
spread S, of the precipitation rate P is calculated for the full
ensemble and the different sub-ensembles:

1 1 N _
I . . 2
Sup = P\/N—l > (PP

The ensemble spread S is normalized with the mean value
of the according (sub-)ensemble P to account for the large
variability of the simulated precipitation rates. It is in some
ways similar to Hohenegger et al. (2006) who compared
the predictability as measured by ensemble spread for three
cases of heavy precipitation.

3.4.  Period and model data availability

The dataset of the present study consists of daily 24-hour
ensemble forecasts between 20 May and 31 August 2009
(104 days in total) characterized by frequent precipitation
episodes in central Europe. On 84% of these days forecasts
of 10 or more ensemble members are available, on 31 days
the entire 20-member ensemble. This heterogeneous data
availability stems from the, at this time, still experimental
character of the forecasts and their dependence on the
timely provision of LBCs from four different global models.
The forecast ensemble mean area-averaged precipitation
exceeds 0.1 mm day~! on 93% of the days. Inspection
of the hourly precipitation rates throughout the period
proves the predominant convective nature of summertime
precipitation in central Europe. In 94% of the time when
precipitation is forecast the ensemble mean area-averaged
CAPE exceeds 10 ] kg_l.

4. Results

4.1. Temporal partition of strongly and weakly forced
meteorological conditions

Statistics of area-averaged hourly ensemble mean COSMO-
DE-EPS convective adjustment time-scales are used to put
the summer 2009 in a ‘climatological’ context employing the
analysis of Zimmer et al. (2011). Based upon observational
data of seven warm seasons in Germany, they found that
the strong and weak synoptic forcing situations can be
regarded as extremes of a continuous distribution, with half
to two thirds of summertime convective events occurring
during strongly forced conditions (7 < 6 (12) hours in 52%
(59%) of the time). This analysis is based upon up to four
radiosonde ascents per day at seven German locations used
to calculate CAPE, as well as rain-gauges and radar data to
estimate precipitation rates within a radius of 50 km around
the sounding locations.

Based upon COSMO-DE-EPS forecasts the hourly
ensemble mean convective adjustment time-scale, averaged
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across the model domain, classifies 67% (80%) of the events
as strong synoptic forcing when applying a threshold of
7 <3 (6) hours in summer 2009, respectively. This is
consistent with the perception of weather conditions in
summer 2009 being mainly governed by upper-level troughs
and corresponding forced frontal precipitation in central
Europe (e.g. DWD, 2010). Note, however, that the higher
percentage of strong synoptic forcing conditions found
here is partly attributable to a model bias in COSMO-
DE CAPE and precipitation forecasts (Baldauf et al., 2011).
Another possible contribution to the difference emerges
from the averaging procedure: regions of large and small
7 are intermixed within the spatial averaging area covering
1090 x 1200 km? in the model, whereas a discrete point-
or disk-like nature of the observations is used in Zimmer
et al. (2011). When, for instance, strong synoptic forcing is
present (corresponding to small T over large regions) north
of the German low mountain range, and in southwest
Germany deep convection occurs under weak synoptic
forcing (resulting in locally large values of 7), the domain-
averaged 7 is smoothed out. Finally, the observational study
was restricted to the four standard radiosonde launch times,
whereas all parts of the diurnal cycle are considered here.

Depending on the specific calculation method (as outlined
above using COSMO model data or observations) the precise
threshold value of the convective adjustment time-scale
to classify into distinct weather regimes may vary, but
ranges between 3 and 12 hours, respectively. While Zimmer
etal. (2011) found a ratio of 2:1 between the occurrences
of strongly and weakly forced meteorological conditions
considering a threshold of 12 hours, the present analysis
suggests a threshold of 3 hours to split the prevailing weather
regimes accordingly using COSMO data. A threshold at the
lower bounds of the 3—12 hours range suggested by Zimmer
et al. (2011) is compensating for the model bias.

4.2.  Weather regime dependent predictability and forecast
quality

As a measure of predictability the normalized ensemble
spread of precipitation of the full 20-member ensemble
is considered. A large (small) spread indicates poor
(good) predictability. Hohenegger et al. (2006) call weather
situations with a normalized precipitation spread close to 1
virtually unpredictable and situations with values close to
0.05 highly predictable. In Figure 2 the normalized spread
of the area-averaged hourly precipitation rate covering
all lead times is plotted against the corresponding area-
averaged hourly convective adjustment time-scale t for
the entire period. At first glance, the scatterplot shows
a general connection between t and the precipitation
spread, with small t corresponding to a lower normalized
spread and large 7 to higher spread values. In order to
highlight the different behaviour a threshold of 3 hours
for the area-averaged convective adjustment time-scale
is employed to separate different weather regimes. For
7 < 3 h there is no v dependency and a mean spread
value of 0.15 indicates fairly predictable situations. In
contrast, for 7 > 3 h the precipitation spread is larger and
steadily increasing, pointing towards unpredictable weather
situations. A regression line fitted for > 3 h indicates a
small positive correlation between S, p and 7 (R* = 0.12)
and confirms the visual impression of a trend in weakly
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Figure 2. Scatterplot of the normalized spread of hourly precipitation at all
lead times plotted against the respective convective adjustment time-scale
7 for summer 2009. For the weak forcing regime (7 > 3 h) a regression line
is fitted to the data. The dashed horizontal lines mark characteristic values
of S,,,p = 0.05 denoting good and S, p = 1 poor predictability, respectively
(Hohenegger et al., 2006), whereas the dashed vertical line marks the chosen
7 threshold of 3 hours. The filled symbols represent data points of the case-
study presented in section 5 denoting filled circles for the weakly and filled
diamonds for the strongly forced conditions.

forced conditions (Figure 2). Note that the very short time-
scales indicate non-convective precipitation merging into
stratiform precipitation with embedded convection.

To assess weather regime dependent differences in forecast
quality the ensemble mean of two deterministic scores is
presented as a function of 7 (Figure 3). For this purpose, the
FBI and ETS values of individual members are computed
using a radar reflectivity threshold of 19 dBZ (corresponding
to 1 mm h™!) before averaging. The mean FBI appears to
be decreasing with increasing v (Figure 3(a)). Although
there is considerable scatter in precipitation forecast quality,
a closer inspection reveals important regime-dependent
differences. Applying, again, a threshold of 3 hours for 7 it
is evident that during strong synoptic forcing (r < 3 h)
the model is predominantly overestimating the relative
frequency of precipitation (FBI > 1). Conversely, it is mostly
underestimated during weakly forced weather regimes
(FBI < 1). Likewise, the ensemble mean ETS is generally
larger (but still very low) during strong forcing conditions
indicating a superior forecast quality (Figure 3(b)). The
skill drops off rapidly for t > 3 h. This points towards the
known problems with insufficient triggering mechanisms in
COSMO-DE during weak synoptic forcing (Baldauf et al.,
2011; Craig et al., 2012) resulting in an underestimation of
precipitation and difficulties in predicting the exact location
of individual convective cells.

Thus, when precipitation is controlled by synoptic forcing
it is more predictable with a higher forecast quality than
during weak synoptic forcing.

4.3.  Impact of different sources of uncertainty
on predictability

The multi-parameter and multi-boundary approach fol-
lowed in COSMO-DE-EPS facilitates a disentanglement of
the different sources of uncertainty by examination of vari-
ous sub-ensembles depending on their perturbation type. To
investigate the regime dependence, the normalized spread
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Figure 3. Scatterplot depicting the ensemble mean (a) FBI and (b) ETS
of hourly instantaneous radar reflectivity as a function of convective
adjustment time-scale 7. The dashed vertical line marks the 7 threshold of
3 hours to stratify strong and weak forcing conditions.

of sub-ensembles is depicted depending on binned convec-
tive adjustment time-scale using box and whisker diagrams
(Figure 4). The normalized precipitation spread S, p of the
PHY sub-ensembles is compared with the spread of the LBC
sub-ensembles. The median and the quartiles of S, p of the
PHY sub-ensembles show a clear dependence of t, that is,
the uncertainty introduced by the physics perturbations is
weather regime dependent. In the case of strong synoptic-
scale forcing (small 7) the practical predictability is high
(low Spp) and decreasing (larger S, p) with increasing t.
In contrast, the uncertainty introduced by the boundary
conditions represented by the LBC sub-ensembles shows
almost no regime dependence. The median of the LBC sub-
ensembles spread of hourly precipitation rates remains fairly
constant (S, p = 0.5 for T < 10 h) with a weak increase for
larger t (up to S,p = 0.9), whereas the median of the PHY
sub-ensembles increases by more than one order of mag-
nitude (from S, p = 0.02 to S, p = 0.4) indicating a strong
regime dependence.

5. Weak and strong forcing case-studies

Finally two representative days of each flow regime are
examined in detail to highlight the different evolution of
the convective adjustment time-scale next to its ingredient
CAPE and hourly precipitation rate during the course of a
day. This is complemented with time series depicting the
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Figure 4. Normalized spread of hourly precipitation of the mean of the
two sub-ensembles PHY (black) and LBC (grey) as a function of convective
adjustment time-scale 7 for summer 2009. The box and whisker diagrams
exhibit the median, the 25 and 75 percentiles and the minimum and
maximum within every bin. The bin width has been chosen to be equidistant
in logarithmic scale. Note that PHY and LBC sub-ensembles are slightly
offset to increase readability.

forecast quality based on instantaneous radar reflectivity
of the individual ensemble members, which clearly show
the clustering of the different members depending on the
source of uncertainty and the differences in spread seen in
the previous section.

5.1.  Weak forcing

On 30 June and 1 July, weather across central Europe
was influenced by an upper-level ridge and a surface
high-pressure region across the North Sea leading to a
weakly northerly flow and weak gradients of equivalent
potential temperatures at 850 hPa (not shown). The daily
accumulated precipitation field is characterized by a spotty,
popcorn-like precipitation structure with large gradients
and maxima close to 100 mm, typically for such locally
forced precipitation episodes.

The diurnal cycle of forecast ensemble mean area-
averaged precipitation, CAPE and t highlights their typical
development (Figure 5). Strongest precipitation is forecast
between 1200 and 2100 UTC with a maximum around
1600 UTC (peaking in 0.2 mm h™') when the absolute
precipitation spread is largest, too. CAPE exhibits a sharp
increase following the solar insolation until it peaks around
midday (500 to 700 ] kg~!), followed by a slight decrease
due to latent heat release by precipitation until sunset and a
larger decrease thereafter. The evolution of t is dominated
by the strong increase in the late morning when CAPE is
produced but convection is not yet triggered. After the onset
and the strengthening of convective precipitation, t rapidly
decreases until a minimum is reached when precipitation
intensity peaks. Thereafter, v gradually increases again
while precipitation weakens. Generally, the ensemble mean
area-averaged 7 continuously exceeds 3 hours attaining
maximum values of up to 60 hours.

The time series of the precipitation forecast quality is
displayed in Figure 5(b) by using the same line style to
show the members comprising a certain LBC sub-ensemble
and the same colour to highlight the ones of a certain
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PHY sub-ensemble, respectively. All ensemble members are
evaluated in a deterministic sense using the FBI to assess
their different quality. In general, three different periods can
be distinguished. First, precipitation is strongly overforecast
until 0900 UTC, when the ensemble predicts rainfall in a few
isolated regions but hardly any precipitation is observed (not
shown). Second, the precipitation is strongly underestimated
between 1000 and 2100 UTC, when convection is most
active and strongest precipitation is observed and predicted.
Third, after 2100 UTC precipitation is overestimated
when precipitation intensities are ceasing. Since the high
precipitation rates in the convective period are decisive for
the daily accumulation, this period doubtlessly comprises the
most interesting hours. During the main convective period,
the forecast quality of the individual members is controlled
by the physics perturbations, and the individual members
are grouped accordingly (Figure 5(b)). For instance, the
members with the lowest forecast skill (FBI < 0.25, i.e.
strong underestimation) during the convective period stem
from the perturbation of the mixing length in the turbulence
scheme (sub-ensemble LBC5). Instead of the currently
operationally used value of 150 m, an asymptotic mixing
length of 500 m (as was used in COSMO-DE in 2007
(e.g. Keil and Craig, 2011)) is used for members 5, 10, 15
and 20 resulting in a strong underestimation. This is in
agreement with Baldauf etal. (2011) who showed that a
smaller mixing length value, affecting the dissipation, the
vertical transport, the vertical gradients and, eventually,
the stability of the atmosphere, leads to superior forecast
quality. The application of the ETS measure results in
very poor scores (ETS < 0.05), but confirms that the
physics perturbations are controlling the forecast quality
(not shown). Most importantly, the main convective period
(1200 until 1800 UTC) corresponds to the time window
when peak precipitation occurs and the different physics
parametrizations are most active resulting in the clear
grouping in LBC sub-ensembles tantamount to a large
spread in the PHY sub-ensembles even at forecast lead times
of 12 to 18 hours.

5.2.  Strong forcing

Two days in mid-July are chosen to examine forced frontal
precipitation cases controlled by strong synoptic forcing.
On both days the meteorological situation is characterized
by an upper-level trough in conjunction with a surface
low-pressure system over the British Isles with its frontal
system crossing central Europe in the course of the day. The
prevailing mid-level wind is westerly, and strong gradients
in equivalent potential temperature at 850 hPa exist in the
frontal zone (not shown). Although instantaneous radar
imagery shows a convective precipitation signature, the
structure of the 24 h accumulated precipitation field is fairly
smooth and widely spread with radar estimated precipitation
sums up to 5-30 (20—60) mm on 12 (17) July, respectively.

The time series of forecast ensemble mean area-averaged
precipitation (Figure 6) exhibits continuous precipitation
throughout the day peaking in 0.2 mm h™! between 0600
and 0900 UTC on 12 July, when both CAPE and t are very
small (5] kg™! < CAPE <20J kg™, 7 < 1 h). On 17 July
the precipitation rates are higher with two peaks amounting
t0 0.5 mm h™! at 0600 UTC and 0.75 mm h™" at 1800 UTC.
Maximum CAPE values are less than 350 ] kg~! shortly after
1200 UTC, while the time series of 7 is showing a bimodal
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are the PHY sub-ensembles whereas the LBC sub-ensembles are denoted with the same line style.

structure inversely to the precipitation rates. The ensemble
mean area-averaged 7 is less than 3 hours throughout
the day. For precipitation and t there is no diurnal cycle
discernible and their temporal evolution is governed by the
timing of the synoptic forcing.

The time series of FBI (Figure 6(b)) and ETS (not shown)
demonstrate the dependence of the individual members on
the synoptic forcing with the LBC controlling the forecast
quality. The spread of the sub-ensemble containing the
same physics perturbation but different LBC (e.g. sub-
ensemble LBC1 consisting of members 1, 6 and 11) is large,
while the spread driven with the same LBC but different
physics perturbation (e.g. sub-ensemble PHY1 consisting
of members 1 to 5) is negligible throughout the day. This
behaviour is typical for the small T regimes, as has been
discussed for Figure 4. In comparison to the weakly forced
case (compare with Figure 5(b)) the forecast quality is
higher during strongly forced conditions thus confirming
the results presented earlier (Figure 2). Note that on both
days only 15 members are available. In summary, there is
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precipitation throughout the day, t is less than 3 h and
the forecast quality is controlled by the LBC during strong
synoptic forcing conditions.

6. Summary and further work

Determining different regime-dependent levels of practical
predictability requires a long dataset of ensemble forecasts.
Such a dataset is provided by the convection-permitting
COSMO-DE-EPS covering summer 2009, when weather
was characterized by frequent precipitation episodes of
predominantly convective nature in central Europe.
Quantifying regime-dependent levels of predictability and
forecast quality requires a measure to objectively distinguish
different types of forcing of convective precipitation. The
time-scale of convective adjustment t provides a physically
based measure to distinguish precipitation situations upon
the degree of synoptic forcing. Based on the normalized
ensemble spread of hourly total precipitation rates it is shown
that the precipitation is more predictable during strong
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Figure 6. Same as Figure 5 but for strong synoptic forcing situations on 12 and 17 July 2009. Note that the maximum range of 7 is 3 hours in (a), in
contrast to Figure 5(a), where this value is illustrated by the dashed horizontal line.

synoptic-scale forcing (¢ < 3 h) than during weak forcing.
Likewise, the forecast skill is higher during strong than
during weak forcing conditions. However, the application
of the convective adjustment time-scale on hourly model
forecast data gives no clear separation between both weather
regimes, and a continuum in the predictability of convection
as suggested by Zimmer et al. (2011) using observations
seems to exist.

Examining distinct sources of uncertainty requires an
appropriate ensemble set-up. The design of COSMO-
DE-EPS following a multi-parameter and multi-boundary
approach facilitates such a distinction by considering certain
sub-ensembles. It is found that the impact of variations
in the lateral boundary conditions is quite insensitive to
the prevailing flow regime, while the impact of physics
perturbations is clearly regime dependent, exhibiting a
strong contribution during weakly forced conditions only.
Then convective precipitation turns out to be particularly
sensitive to variations in the physics parametrization, that
represent the model error, during the main convective
period at lead times of 12 to 18 hours, when the different
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parametrizations are likely most active resulting in the most
spread increase.

Using hourly precipitation rates allows for the exami-
nation of the diurnal cycle of precipitation and 7 during
different flow conditions and highlights the results gained
with the normalized spread in detail. Note that the hourly
precipitation rates and, even more so, the instantaneous
radar intensities used to assess forecast quality of precipi-
tation with a mosaic of radar observations pose stringent
requirements on correct location and timing of the forecasts,
in contrast to frequently used rainfall accumulations over 6,
12 or even 24 hours. The longer the accumulation period the
less variable and informative are the scores, and the diurnal
cycle in particular is obscured.

In general the results on the weather regime dependence
of precipitation forecast quality and its inherent uncertainty
confirm previous ensemble studies (e.g. Stensrud et al,
2000; Schwartz et al., 2010; Vié et al., 2011). However, an
objective measure to classify the flow regime is desirable
for long periods or operational applications, whereas a
subjective classification of the type of forcing is only feasible
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for short periods or single case-studies (e.g. Stensrud
et al., 2000; Vié etal, 2011). The convective adjustment
time-scale T constitutes such an objective measure that
is based on predicted CAPE and precipitation rates and
thus easy to compute throughout the entire forecast range.
Most importantly, the convective adjustment time-scale t
represents an indicator of the practical predictability level
of convective precipitation, in contrast to other instability
indices (like the moist Brunt—Viisila frequency) that exhibit
poor predictive skill (Hohenegger et al., 2006).

In the present study the ensemble mean 7 has been
spatially averaged across central Europe. The spatial
averaging is considered to be a significant limitation when
different weather conditions coexist over different parts
of the domain. Issues such as the size of the averaging
domain, the usage of radar-based, quality-controlled,
hourly precipitation products to assess forecast quality, the
application of spatial and probabilistic verification measures
and the role of initial condition perturbations are beyond the
scope of the present study but are currently examined within
the Hans-Ertel-Centre for Weather Research at Ludwig-
Maximilians-Universitt.

Here, the weather regime dependent aspect of prac-
tical predictability using quasi-operational convection-
permitting ensemble forecasts of total precipitation with
a limited representation of uncertainty sources has been
examined. An interesting extension will be to explore the
utility of the convective adjustment time-scale in intrinsic
predictability experiments. We are currently investigating
the aspect of intrinsic predictability by performing upscale
error growth experiments with COSMO-DE applying the
3-stage-error-growth model (Zhang et al., 2007) to a real
weather system.

Finally, the importance of the role of the model error
during the convective period in the afternoon at long lead
times in weakly forced weather regimes has implications
for the design of future convective-scale ensemble systems.
Recent studies (Vié et al., 2011; Craig et al., 2012; Peralta
et al., 2012; Kiithnlein et al., 2013) demonstrate that initial
condition perturbations fade out after 6 to 12 hours lead
time. A future convective-scale ensemble system relying
on LBCs of a global EPS combined with initial condition
perturbations generated with a Local Ensemble Transform
Kalman Filter (Reich et al.,2011) seems to need an additional
source of uncertainty representing the model error (such
as a stochastic boundary-layer parametrization) especially
during weakly forced conditions.
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